Climate Dynamics

, Volume 31, Issue 7–8, pp 759–777 | Cite as

NAO–ocean circulation interactions in a coupled general circulation model

  • A. Bellucci
  • S. Gualdi
  • E. Scoccimarro
  • A. Navarra


The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead–lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean–atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode.


NAO Ocean dynamics North Atlantic decadal variability 



The authors wish to thank Riccardo Farneti and Annalisa Cherchi for stimulating discussions and precious support. Comments from three reviewers considerably improved the original manuscript. This work was supported by the Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) Project and the European Community ENSEMBLES Project (Contract GOCECT-2003-505539).


  1. Anderson D, Bryan K, Gill A, Pacanowski R (1979) The transient response of the North Atlantic: some model studies. J Geophys Res 84:4795–4815CrossRefGoogle Scholar
  2. Baringer M, Larsen J (2001) Sixteen years of florida current transport at 27N. Geophys Res Lett 28:3179–3182CrossRefGoogle Scholar
  3. Bellucci A, Richards KJ (2006) Effects of NAO variability on the North Atlantic Ocean circulation. Geophys Res Lett 33:L02612. doi: 10.1029/2005GL024890 CrossRefGoogle Scholar
  4. Blackman R, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover, MineolaGoogle Scholar
  5. Bretherton C, Battisti D (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27:767–770CrossRefGoogle Scholar
  6. Cayan D (1992) Latent and sensible heat flux anomalies over the Northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881CrossRefGoogle Scholar
  7. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623CrossRefGoogle Scholar
  8. Czaja A, Marshall J (2001) Observations of atmosphere ocean coupling in the North Atlantic. J R Meteor Soc 127:1893–1916CrossRefGoogle Scholar
  9. D’Andrea F, Czaja A, Marshall J (2005) Impact of anomalous ocean heat transport on the North Atlantic Oscillation. J Clim 18:4955–4969CrossRefGoogle Scholar
  10. Deser C, Blackmon R (1993) Surface climate variations over the North Atlantic during winter: 1900–1989. J Clim 10:393–408CrossRefGoogle Scholar
  11. Eden C, Greatbatch R (2003) A damped decadal oscillation in the North Atlantic climate system. J Clim 16:4043–4060CrossRefGoogle Scholar
  12. Eden C, Willebrandt J (2001) Mechanisms of interannual to decadal variability in the North Atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  13. Feldstein SB (2000) The timescale, power spectra, and climate noise properties of teleconnection patterns. J Clim 13:4430–4440CrossRefGoogle Scholar
  14. Ferreira D, Frankignoul C (2005) The transient atmospheric to midlatitude SST anomalies. J Clim 18:1049–1067CrossRefGoogle Scholar
  15. Fichefet T, Morales-Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268CrossRefGoogle Scholar
  16. Frankignoul C, Hasselmann K (1977) Stochastic climate models, part II: applications to sea-surface temperature variability and thermocline variability. Tellus 29:289–305CrossRefGoogle Scholar
  17. Frankignoul C, Czaja A, L’Heveder B (1998) Air-sea feedback in the North Atlantic and surface boundary conditions for ocean models. J Clim 11:2310–2324CrossRefGoogle Scholar
  18. Frankignoul C, Kestenare E, Sennéchael N, de Coëtlogon G, D’Andrea F (2000) On decadal-scale ocean-atmosphere interactions in the extended ECHAM1/LSG climate simulation. Clim Dyn 16:333–354CrossRefGoogle Scholar
  19. Grötzner A, Latif M, Barnett T (1998) A decadal climate cycle in the North Atlantic ocean as simulated by the ECHO coupled GCM. J Clim 11:831-847CrossRefGoogle Scholar
  20. Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003a) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann Geophys 46:1–26Google Scholar
  21. Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003b) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582Google Scholar
  22. Gualdi S, Scoccimarro E, Navarra A (2007) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J Clim (in press)Google Scholar
  23. Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. Clim Dyn 16:1141–1158Google Scholar
  24. Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell J , Kushnir J, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington DCGoogle Scholar
  25. Kaplan A, Kushnir Y, Cane M, Blumenthal B (1997) Reduced space optimal analysis for historical datasets:136 years of Atlantic sea surface temperatures. J Geophys Res 102:27835–27860CrossRefGoogle Scholar
  26. Killworth P, Chelton D, de Szoeke R (1997) The speed of observed and theoretical long extratropical planetary waves. J Phys Oceanogr 27:1946–1966CrossRefGoogle Scholar
  27. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:1–32CrossRefGoogle Scholar
  28. Latif M, Barnett T (1994) Causes of decadal variability over the North Pacific and North America. Science 266:634–637CrossRefGoogle Scholar
  29. Latif M, Barnett T (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim 9:2407–2423CrossRefGoogle Scholar
  30. Luo J, Masson S, Behera S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys Res Lett 30, 2250. doi: 10.1029/2003GL018649
  31. Madden R (1981) A quantitative approach to long range prediction. J Geophys Res 86:9817–9825CrossRefGoogle Scholar
  32. Marotzke J, Klinger B (2000) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Phys Oceanogr 30:955–970CrossRefGoogle Scholar
  33. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Clim 14:1399–1421CrossRefGoogle Scholar
  34. Neelin JD, Weng W (1999) Analytical prototypes for ocean-atmosphere interaction at midlatitudes. Part I: coupled feedbacks as a sea surface temperature dependent stochastic process. J Clim 12:697–721CrossRefGoogle Scholar
  35. Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Clim 12:1393–1408CrossRefGoogle Scholar
  36. Peng S, Robinson W, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29:1276. doi: 10.1029/2001GL014043 CrossRefGoogle Scholar
  37. Peng S, Robinson W, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim 16:1987–2004CrossRefGoogle Scholar
  38. Rodwell M, Rowell D, Folland C (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398:320–323CrossRefGoogle Scholar
  39. Saravanan R, McWilliams J (1998) Advective ocean-atmosphere interaction: an analytical stochastic model with implications for decadal variability. J Clim 11:165–188CrossRefGoogle Scholar
  40. Schneider E, Fan M (2007) Weather noise forcing of surface climate variability. J Atm Sci 64:3265–3280CrossRefGoogle Scholar
  41. Schott F, Lee T, Zantopp R (1988) Variability of structure and transport of the florida current in the period range of days to seasonal. J Phys Oceanogr 18:1209–1230CrossRefGoogle Scholar
  42. Stephenson D, Pavan V, Collins M, Junge M, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27:401–420. doi: 10.1007/s00382-006-0140-x CrossRefGoogle Scholar
  43. Storch HV, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, United KingdomGoogle Scholar
  44. Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388:563–567CrossRefGoogle Scholar
  45. Thompson D, Lee S, Baldwin M (2003) Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation. In: Hurrell J, Kushnir J, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington DCGoogle Scholar
  46. Visbeck M, Chassignet E, Curry RG, Delworth T, Dickson R, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation. In: Hurrell J, Kushnir J, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington DCGoogle Scholar
  47. Watanabe M, Kimoto M (2000) On the persistence of decadal SST anomalies in the North Atlantic. J Clim 13:3017–3028CrossRefGoogle Scholar
  48. Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic Oscillation and Southern Oscillations. Bull Am Meteor Soc 80:245–255CrossRefGoogle Scholar
  49. Zorita E, Frankignoul C (1997) Modes of North Atlantic decadal variability in the ECHAM1/LSG coupled atmosphere-ocean general circulation model. J Clim 10:183:200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Bellucci
    • 1
  • S. Gualdi
    • 1
    • 2
  • E. Scoccimarro
    • 2
  • A. Navarra
    • 1
    • 2
  1. 1.Centro Euro-Mediterraneo per i Cambiamenti ClimaticiBolognaItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaBolognaItaly

Personalised recommendations