Climate Dynamics

, Volume 31, Issue 6, pp 633–645 | Cite as

Modeled seasonality of glacial abrupt climate events

  • Jacqueline Flückiger
  • Reto Knutti
  • James W. C. White
  • Hans Renssen
Article

Abstract

Greenland ice cores, as well as many other paleo-archives from the northern hemisphere, recorded a series of 25 warm interstadial events, the so-called Dansgaard-Oeschger (D-O) events, during the last glacial period. We use the three-dimensional coupled global ocean–atmosphere–sea ice model ECBILT-CLIO and force it with freshwater input into the North Atlantic to simulate abrupt glacial climate events, which we use as analogues for D-O events. We focus our analysis on the Northern Hemisphere. The simulated events show large differences in the regional and seasonal distribution of the temperature and precipitation changes. While the temperature changes in high northern latitudes and in the North Atlantic region are dominated by winter changes, the largest temperature increases in most other land regions are seen in spring. Smallest changes over land are found during the summer months. Our model simulations also demonstrate that the temperature and precipitation change patterns for different intensifications of the Atlantic meridional overturning circulation are not linear. The extent of the transitions varies, and local non-linearities influence the amplitude of the annual mean response as well as the response in different seasons. Implications for the interpretation of paleo-records are discussed.

Keywords

Climate modeling Dansgaard-Oeschger events Glacial Seasonality Meridional overturning circulation 

References

  1. Aeberhardt M, Blatter M, Stocker TF (2000) Variability on the century time scale and regime changes in a stochastically forced, zonally-averaged ocean–atmosphere model. Geophys Res Lett 27:1303–1306CrossRefGoogle Scholar
  2. Alley RB, Clark PU, Keigwin LD, Webb RS (1999) Making sense of millennial-scale climate change. In: Clark PU, Webb RS, Keigwin LD (eds) Mechanisms of global climate change at millennial time scales, vol 112. AGU, Washington, pp 385–394Google Scholar
  3. Alley RB, Meese DA, Shuman CA, Gow AJ, Taylor KC, Grootes PM, White JWC, Ram M, Waddington ED, Mayewski PA, Zielinski ZA (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–529CrossRefGoogle Scholar
  4. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim: 2122–2143Google Scholar
  5. Curry WB, Oppo DW (1997) Synchronous, high-frequency oscillations in tropical sea surface temperatures and North Atlantic deep water production during the last glacial cycle. Paleoceanography 12(1):1–14CrossRefGoogle Scholar
  6. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250 kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  7. Denton GH, Alley RB, Comer GC, Broecker WS (2005) The role of seasonality in abrupt climate change. Quat Sci Rev 24(10–11):1159–1182CrossRefGoogle Scholar
  8. Elliot M, Labeyrie L, Duplessy J-C (2002) Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60–10 ka). Quat Sci Rev 21(10):1153–1165CrossRefGoogle Scholar
  9. Fawcett PJ, Agustsdottir AM, Alley RB, Shuman CA (1997) The Younger Dryas termination and North Atlantic deepwater formation: insights from climate model simulations and Greenland ice core data. Paleoceanography 12(1):23–38CrossRefGoogle Scholar
  10. Flückiger J, Blunier T, Stauffer B, Chappellaz J, Spahni R, Kawamura K, Schwander J, Stocker TF, Dahl-Jensen D (2004) N2O and CH4 variations during the last glacial epoch: insight into global processes. Glob Biogeochem Cycles 18:GB1020. doi:1010.1029/2003GB002122 CrossRefGoogle Scholar
  11. Flückiger J, Knutti R, White JWC (2006) Oceanic processes as potential trigger and amplifying mechanisms for Heinrich events. Paleoceanography 21:PA2014. doi:2010.1029/2005PA001204 CrossRefGoogle Scholar
  12. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158CrossRefGoogle Scholar
  13. Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochastic resonance. Phys Rev Lett 88(3):038501CrossRefGoogle Scholar
  14. Genty D, Blamart D, Ouahdi R, Gilmour M, Baker A, Jouzel J, Van-Exter S (2003) Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421:833–837CrossRefGoogle Scholar
  15. Goosse H, Fichefet T (1999) Importance of ice–ocean interactions for the global ocean circulation: a model study. J Geophys Res 104(C10):23337–323355CrossRefGoogle Scholar
  16. Goosse H, Renssen H, Selten FM, Haarsma RJ, Opsteegh JD (2002) Potential causes of abrupt climate events: a numerical study with a three-dimensional climate model. Geophys Res Lett 29(18):1860. doi:1810.1029/2002GL014993 CrossRefGoogle Scholar
  17. Hall A, Stouffer J (2001) An abrupt climate event in a coupled ocean-atmosphere simulation without external forcing. Nature 409:171–174CrossRefGoogle Scholar
  18. Hendy IL, Kennett JP (2003) Tropical forcing of North Pacific intermediate water distribution during Late Quaternary rapid climate change? Quat Sci Rev 22:673–689CrossRefGoogle Scholar
  19. Huber C, Leuenberger M, Spahni R, Flückiger J, Schwander J, Stocker TF, Johnsen S, Landais A, Jouzel J (2006) Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet Sci Lett 243(3–4):504–519CrossRefGoogle Scholar
  20. Ji J, Chen J, Balsam W, Lu H, Sun Y, Xu H (2004) High resolution hematite/goethite records from Chinese loess sequences for the last glacial–interglacial cycle: rapid climatic response of the East Asian monsoon to the tropical Pacific. Geophys Res Lett 31:L03207. doi:03210.01029/02003GL018975 CrossRefGoogle Scholar
  21. Jouzel J (1999) Calibrating the isotopic paleothermometer. Science 286:910–911CrossRefGoogle Scholar
  22. Knutti R, Flückiger J, Stocker TF, Timmermann A (2004) Strong hemispheric coupling of glacial climate through freshwater discharge. Nature 430:851–856CrossRefGoogle Scholar
  23. Knutti R, Stocker TF (2002) Limited predictability of the future thermohaline circulation close to an instability threshold. J Clim 15:179–186CrossRefGoogle Scholar
  24. Kudrass HR, Hofmann A, Doose H, Emeis K, Erlenkeuser H (2001) Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k years. Geology 29(1):63–66CrossRefGoogle Scholar
  25. Landais A, Barnola J-M, Masson-Delmotte V, Jouzel J, Chappellaz J, Caillon N, Huber C, Leuenberger M, Johnsen SJ (2004) A continuous record of temperature evolution over a sequence of Dansgaard-Oeschger events during Marine Isotopic Stage 4 (76–62 k years BP). Geophys Res Lett 31:L22211. doi:22210.21029/22004GL021193 CrossRefGoogle Scholar
  26. Lang C, Leuenberger M, Schwander J, Johnsen S (1999) 16°C rapid temperature variation in central Greenland 70,000 years ago. Science 286:934–937CrossRefGoogle Scholar
  27. Li C, Battisti DS, Schrag DP, Tziperman E (2005) Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys Res Lett 32:L19702. doi:19710.11029/12005GL023492 CrossRefGoogle Scholar
  28. Lie Ø, Paasche Ø (2006) How extreme was northern hemisphere seasonality during the Younger Dryas? Quat Sci Rev 25(5–6):404–407CrossRefGoogle Scholar
  29. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi JJ-M, Ivanova EV, Kissel C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann U, Peeters F, Yu E-F, Zahn R (2007) Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316:66–69CrossRefGoogle Scholar
  30. Marchal O, Stocker TF, Joos F (1998) Impact of oceanic reorganizations on the ocean carbon cycle and atmospheric carbon dioxide content. Paleoceanography 13(3):225–244CrossRefGoogle Scholar
  31. Marshall SJ, Clarke GKC (1999) Modeling North American freshwater runoff through the last glacial cycle. Quat Res 52(3):300–315CrossRefGoogle Scholar
  32. McManus JF, Francois R, Gherardi J-M, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837CrossRefGoogle Scholar
  33. Meehl GA (1994) Coupled land–ocean–atmosphere processes and South Asian monsoon variability. Science 266:263–267CrossRefGoogle Scholar
  34. Müller UC, Pross J, Bibus E (2003) Vegetation response to rapid climate change in Central Europe during the past 140,000 year based on evidence from the Füramoos pollen record. Quat Res 59:235–245CrossRefGoogle Scholar
  35. North Greenland Ice Core Project members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  36. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367Google Scholar
  37. Ortiz JD, O’Connell SB, DelViscio J, Dean W, Carriquiry JD, Marchitto T, Zheng Y, van Geen A (2004) Enhanced marine productivity off western North America during warm climate intervals of the past 52 k years. Geology 32(6):521–524CrossRefGoogle Scholar
  38. Peltier WR (1994) Ice age paleotopography. Science 265:195–201CrossRefGoogle Scholar
  39. Peterson LC, Haug GH, Hughen KA, Röhl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290:1947–1951CrossRefGoogle Scholar
  40. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214CrossRefGoogle Scholar
  41. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32(23):L23605. doi:23610.21029/22005GL023655 CrossRefGoogle Scholar
  42. Renssen H, Bogaart PW (2003) Atmospheric variability over the ∼14.7 k years BP stadial–interstadial transition in the North Atlantic region as simulated by an AGCM. Clim Dyn 20(2–3):301–313Google Scholar
  43. Renssen H, Isarin RFB (2001) The two major warming phases of the last deglaciation at ∼14.7 and ∼11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments. Glob Planet Change 30(1–2):117–153CrossRefGoogle Scholar
  44. Roche DM, Dokken TM, Goosse H, Renssen H, Weber SL (2007) Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model. Clim Past 3:205–224Google Scholar
  45. Sakai K, Peltier WR (1997) Dansgaard–Oeschger oscillations in a coupled atmosphere–ocean climate model. J Clim 10(5):949–970CrossRefGoogle Scholar
  46. Sarnthein M, Stattegger K, Dreger D, Erlenkeuser H, Grootes P, Haupt BJ, Jung S, Kiefer T, Kuhnt W, Pflaumann U, Schäfer-Neth C, Schulz H, Schulz M, Seidov D, Simstich J, van Kreveld S, Vogelsang E, Völker A, Weinelt M (2000) Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 k years—concepts, reconstruction and numerical modeling. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The northern North Atlantic: a changing environment. Springer, Berlin, pp 365–410Google Scholar
  47. Schaeffer M, Selten FM, Opsteegh JD, Goosse H (2002) Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophys Res Lett 29(16):1767. doi:1710.1029/2002GL015254 CrossRefGoogle Scholar
  48. Schmittner A, Saenko OA, Weaver AJ (2003) Coupling of the hemispheres in observations and simulations of glacial climate change. Quat Sci Rev 22:659–671CrossRefGoogle Scholar
  49. Schmittner A, Stocker TF (2001) A seasonally forced ocean–atmosphere model for paleoclimate studies. J Clim 14:1055–1068CrossRefGoogle Scholar
  50. Schmittner A, Yoshimori M, Weaver AJ (2002) Instability of glacial climate in a model of the ocean–atmosphere–cryosphere system. Science 295:1489–1493CrossRefGoogle Scholar
  51. Schulz H, von Rad U, Erlenkeuser H (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57Google Scholar
  52. Schulz M, Paul A, Timmermann A (2002) Relaxation oscillators in concert: a framework for climate change at millennial timescales during the late Pleistocene. Geophys Res Lett 29(24):2193. doi:2110.1029/2002GL016144 CrossRefGoogle Scholar
  53. Schulz M, Prange M, Klocker A (2007) Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model. Clim Past 3:97–107Google Scholar
  54. Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146CrossRefGoogle Scholar
  55. Shackleton NJ, Hall MA, Vincent E (2000) Phase relationships between millennial scale events 64,000 to 24,000 years ago. Paleoceanography 15(6):565–569CrossRefGoogle Scholar
  56. Spötl C, Mangini A (2002) Stalagmite from the Austrian Alps reveals Dansgaard-Oeschger events during isotope stage 3: implications for the absolute chronology of Greenland ice cores. Earth Planet Sci Lett 203:507–518CrossRefGoogle Scholar
  57. Stocker TF, Marchal O (2000) Abrupt climate change in the computer: is it real? Proc US Natl Acad Sci 97(4):1362–1365CrossRefGoogle Scholar
  58. Timmermann A, Justino FB, Jin F-F, Goosse H (2004) Surface temperature control in the North and tropical Pacific during the last glacial maximum. Clim Dyn 23(3–4):353–370Google Scholar
  59. Timmermann A, Krebs U, Justino F, Goosse H, Ivanochko T (2005) Mechanisms for millennial-scale global synchronization during the last glacial period. Paleoceanography 20:PA4008. doi:4010.1029/2004PA001090 CrossRefGoogle Scholar
  60. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  61. Voelker AHL, workshop participants (2002) Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat Sci Rev 21(10):1185–1212CrossRefGoogle Scholar
  62. Wagner G, Laj C, Beer J, Kissel C, Muscheler R, Masarik J, Synal H-A (2001) Reconstruction of the paleoaccumulation rate of central Greenland during the last 75 k years using the cosmogenic radionuclides 36Cl and 10Be and geomagnetic field intensity data. Earth Planet Sci Lett 193:515–521CrossRefGoogle Scholar
  63. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348CrossRefGoogle Scholar
  64. Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim Past 3:51–64CrossRefGoogle Scholar
  65. Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572–575CrossRefGoogle Scholar
  66. Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558CrossRefGoogle Scholar
  67. Zic M, Negrini RM, Wigand PE (2002) Evidence of synchronous climate change across the northern hemisphere between the north Atlantic and the northwestern Great Basin, United States. Geology 30(7):635–638CrossRefGoogle Scholar
  68. Zweck C, Huybrechts P (2005) Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J Geophys Res 110:D07103. doi:07110.01029/02004JD005489 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jacqueline Flückiger
    • 1
    • 2
  • Reto Knutti
    • 3
  • James W. C. White
    • 1
  • Hans Renssen
    • 4
  1. 1.Institute of Arctic and Alpine Research, University of ColoradoBoulderUSA
  2. 2.Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZurichSwitzerland
  3. 3.Institute for Atmospheric and Climate Science, ETH ZürichZurichSwitzerland
  4. 4.Faculty of Earth and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations