Advertisement

Climate Dynamics

, Volume 32, Issue 1, pp 35–54 | Cite as

Present-day climatology and projected changes of warm and cold days in the CNRM-CM3 global climate model

  • J. BallesterEmail author
  • H. Douville
  • F. Chauvin
Article

Abstract

The impact of global warming on the warmest and coldest days of the annual cycle is explored according to an A2 scenario simulated by the CNRM-CM3 climate model in the framework of the IPCC AR4 intercomparison. Given the multi-model spread in IPCC projections, a validation strategy is proposed using the NCEP/NCAR reanalysis. Validation of the late twentieth century model climatology shows that warm and cold model events are slightly too long and infrequent. Although interannual trends in the warm (cold) day occurrence were positive (negative) only for six (three) of the nine considered sub-continental regions, simulated model trends are always positive (negative). This different behaviour suggests that simulated non-anthropogenic decadal variability is small relative to anthropogenic trends. Large-scale synoptic processes associated with European regional warm and cold peaks are also described and validated. Regional cold peaks are better reproduced than warm peaks, whose intensity accuracy is limited by other physical variables. Positive (negative) winter anomalies of sea and land surface temperature lead to summers with severe (weak) temperatures. These inter-annual anomalies are generated by a persistent pressure dipole over Europe. Regarding climate change, warm (cold) events will become more (less) frequent and longer (shorter). The number of warm days will largely rise and the number of cold days will dramatically decrease. The intensity of warm days will be particularly pronounced over Europe, given the projected summer drying in this region. However, according to the limited skill of the CNRM model, these results must be considered with caution.

Keywords

Global warming IPCC-AR4 Warm and cold day Regional temperature peak Model validation 

Notes

Acknowledgments

We would like to acknowledge the valuable and constructive comments and corrections made by the reviewers of the present work.

References

  1. Alfaro EJ, Gershunov A, Cayan D (2006) Prediction of summer maximum and minimum temperature over the central and western United States: the roles of soil moisture and sea surface temperature. J Clim 19:1407–1421CrossRefGoogle Scholar
  2. Beniston M, Diaz HF (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Glob Planet Change 44:73–81CrossRefGoogle Scholar
  3. Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59:217–223CrossRefGoogle Scholar
  4. Black E, Sutton R (2006) The influence of oceanic conditions on the hot European summer of 2003. Clim Dyn 28:53–66CrossRefGoogle Scholar
  5. Brabson BB, Lister DH, Jones PD, Palutikof JP (2005) Soil moisture and predicted spells of extreme temperatures in Britain. J Geophys Res 110:D05104. doi: 10.1029/2004JD005156 CrossRefGoogle Scholar
  6. Caesar J, Alexander L, Vose R (2006) Large-scale changes in observed daily maximum and minimum temperatures: creation and analysis of a new gridded data set. J Geophys Res 111:D05101. doi: 10.1029/2005JD006280 CrossRefGoogle Scholar
  7. Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811CrossRefGoogle Scholar
  8. Chauvin F, Denvil S (2007) Changes in severe indices as simulated by two French coupled global climate models. Glob Planet Change 57:96–117CrossRefGoogle Scholar
  9. Christensen JH, Christensen OB (2003) Severe summertime flooding in Europe. Nature 421:805–806CrossRefGoogle Scholar
  10. Clark RT, Brown SJ, Murphy JM (2006) Modeling northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435CrossRefGoogle Scholar
  11. Déqué M et al (1999) Documentation ARPEGE-CLIMAT. Available from the centre national de Recherches Météorologiques, Météo-France, Toulouse, FranceGoogle Scholar
  12. Dhainaut JF, Claessens, Ginsburg C, Riou B (2004) Unprecedented heat-related deaths during the 2003 heat wave in Paris: consequences on emergency departments. Crit Care 8:1–2Google Scholar
  13. Douville H, Chauvin F, Royer JF, Salas-Mélia S, Tyteca S (2002) Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Clim Dyn 20:45–68CrossRefGoogle Scholar
  14. Douville H, Salas-Mélia D, Tyteca S (2006) On the tropical origin of uncertainties in the global land precipitation response to global warming. Clim Dyn 26:367–385CrossRefGoogle Scholar
  15. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modelling, and impacts. Science 22:2068–2074CrossRefGoogle Scholar
  16. Eliseev AV, Guseva MS, Mokhov II, Rubinshtein KG (2004) Amplitude–phase characteristics of the annual cycle of surface temperature: comparison of AGCM output and reanalysis data. Izv, Atmos Ocean Phys 40:381–393Google Scholar
  17. Eliseev AV, Mohkov II (2003) Amplitude–phase characteristics of the annual cycle of surface air temperature in the northern hemisphere. Adv Atmos Sci 20:1–16Google Scholar
  18. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi: 10.1029/2006GL029068 CrossRefGoogle Scholar
  19. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212CrossRefGoogle Scholar
  20. Friedlingstein P, Solomon S (2005) Contributions of past and present human generations to committed warming caused by carbon dioxide. PNAS 102:10832–10836CrossRefGoogle Scholar
  21. Gershunov A, Douville H (2007) Extensive summer hot and cold spells under current and possible future climatic conditions: Europe and North America. In: RPI workshop “Assessing, Modeling, and Monitoring the Impacts of Extreme Climate Events”. Cambridge University Press, Chapter 3Google Scholar
  22. Gibelin AL, Déqué M (2004) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339Google Scholar
  23. Goodess CM, Hanson C, Hulme M, Osborn TJ (2003) Representing climate and extreme weather events in integrated assessment models: a review of existing methods and options for development. Integr Assess 4:145–171CrossRefGoogle Scholar
  24. Haylock MR (2004) STARDEX diagnostic extremes indices software. User information. Available online from http://www.cru.uea.ac.uk/projects/stardex/deis/Diagnostic_tool.pdf/
  25. IPCC Working Group I, II, III (2001) Climate change 2001: synthesis report. Available online from http://www.ipcc.ch/
  26. IPCC Working Group I (2007) The physical science basis of climate change. Available online from http://www.ipcc.ch/
  27. Kalnay E, Kanamitsua M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mob KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  28. Katz RW, Brown BG (2004) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302CrossRefGoogle Scholar
  29. Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. J Clim 13:3760–3788CrossRefGoogle Scholar
  30. Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173CrossRefGoogle Scholar
  31. Kim J (2005) A projection of the effects of the climate change induced by increased CO2 on extreme hydrologic events in the western US. Clim Change 68:153–168CrossRefGoogle Scholar
  32. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD–ROM and documentation. BullAm Meteorol Soc 82:247–267CrossRefGoogle Scholar
  33. Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswal AK, Kolli RK, Sikder AB, Deshpande NR, Revadekar JV, Yeleuova K, Vandashev S, Faleyeva M, Gomboluudev P, Budhathoki KP, Hussain A, Afzaal M, Chandrapala L, Anvar H, Amanmurad D, Asanova VS, Jones PD, New MG, Spektorman T (2006) Changes in daily temperature and precipitation extremes in central and south Asia. J Geophys Res 111:D16105. doi: 10.1029/2005JD006316 CrossRefGoogle Scholar
  34. Kunkel KE, Pielke RA Jr., Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Am Meteorol Soc 80:1077–1098CrossRefGoogle Scholar
  35. Levinson DH, Waple AM (2004) State of climate in 2003. Bull Am Meteorol Soci 85:1–72Google Scholar
  36. Lobell D, Bonfils C, Duffy PB (2007) Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison. Geophys Res Lett 34:L05715. doi: 10.1029/2006GL028726 CrossRefGoogle Scholar
  37. Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1: ocean general circulation model reference manual. Available from http://www.lodyc.jussieu.fr/opa/Docu_Free/Doc_models/Doc_OPA8.1.pdf/
  38. Manton MJ, Della-Marta PM, Haylock MR, Hennessy KJ, Nicholls N, Chambers LE, Collins DA, Daw G, Finet A, Gunawan D, Inape K, Isobe H, Kestin TS, Lefale P, Leyu CH, Lwin T, Maitrepierre L, Ouprasitwong N, Page CM, Pahalad J, Plummer N, Salinger MJ, Suppiah R, Tran VL, Trewin B, Tibig I, Yee D (2001) Trends in extreme daily rainfall and temperature in southeast Asia and the South Pacific: 1961–1998. Int J Climatol 21:269–284CrossRefGoogle Scholar
  39. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  40. Meehl GA, Karl T, Easterling DR, Changnon S, Pielke Jr. R, Changnon D, Evans J, Groisman PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root T, Sylves RT, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81:413–416CrossRefGoogle Scholar
  41. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 5686:994–997CrossRefGoogle Scholar
  42. Palutikof JP, Goodess CM, Guo X (1994) Climate change, potential evapotranspiration and moisture availability in the Mediterranean basin. Int J Climatol 14:853–869CrossRefGoogle Scholar
  43. Pan WH, Li LA, Tsai MJ (1995) Temperature extremes and mortality from coronary heart disease and cerebral infarction in elderly Chinese. Lancet 8946:353–355CrossRefGoogle Scholar
  44. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317CrossRefGoogle Scholar
  45. Patz JA, Olson SH (2006) Malaria risk and temperature: influences from global climate change and local land use practices. PNAS 103:5635–5636CrossRefGoogle Scholar
  46. Pfister C, Brázdil R, Glaser R, Barriendos M, Camuffo D, Deutsch M, Dobrovolný P, Enzi S, Guidoboni E, Kotyza O, Militzer S, Rácz L, Rodrigo FS (1999) Documentary evidence on climate in sixteenth-century Europe. Clim Change 43:55–110CrossRefGoogle Scholar
  47. Rodó X (2001) Reversal of three global atmospheric fields linking changes in SST anomalies in the Pacific, Atlantic and Indian oceans at tropical latitudes and midlatitudes. ClimDyn 18:203–217Google Scholar
  48. Rodó X, Pascual M, Fuchs G, Faruque ASG (2002) ENSO and cholera: a nonstationary link related to climate change? PNAS 99:12901–12906CrossRefGoogle Scholar
  49. Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766CrossRefGoogle Scholar
  50. Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172CrossRefGoogle Scholar
  51. Salas-Mélia D, Chauvin F, Déqué M, Douville H, Guérémy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model. Note de Centre du CNRM, n°103Google Scholar
  52. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefGoogle Scholar
  53. Simmons AJ, Jones PD, da Costa Bechtold V, Beljaars ACM, Kållberg PW, Saarinen S, Uppala SM, Viterbo P, Wedi N (2004) Comparison of trends and variability in CRU, ERA-40 and NCEP/NCAR analyses of monthly-mean surface air temperature. ERA-40 project report series no. 18Google Scholar
  54. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854 1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  55. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614CrossRefGoogle Scholar
  56. Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  57. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. An intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211CrossRefGoogle Scholar
  58. Vautard R, Yiou P, D’Andrea F, de Noblet N, Viovy N, Cassou C, Polcher J, Ciais P, Kageyama M, Fan Y (2007) Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys Res Lett 34:L07711. doi: 10.1029/2006GL028001 CrossRefGoogle Scholar
  59. Vavrus SJ, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26:1133–1147CrossRefGoogle Scholar
  60. Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Change 53:355–392CrossRefGoogle Scholar
  61. Zhai P, Sun A, Ren F, Liu X, Gao B, Zhang Q (1999) Changes of climate extremes in China. Clim Change 43:203–218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Climate Research Laboratory (LRC), Barcelona Science Park (PCB)BarcelonaSpain
  2. 2.Centre National de Recherches Météorologiques (CNRM), Météo-FranceToulouse Cedex 01France

Personalised recommendations