Climate Dynamics

, Volume 30, Issue 7–8, pp 855–869 | Cite as

Impact of a realistic river routing in coupled ocean–atmosphere simulations of the Last Glacial Maximum climate

  • Ramdane Alkama
  • M. Kageyama
  • G. Ramstein
  • O. Marti
  • P. Ribstein
  • D. Swingedouw


The presence of large ice sheets over North America and North Europe at the Last Glacial Maximum (LGM) strongly impacted Northern hemisphere river pathways. Despite the fact that such changes may significantly alter the freshwater input to the ocean, modified surface hydrology has never been accounted for in coupled ocean–atmosphere general circulation model simulations of the LGM climate. To reconstruct the LGM river routing, we use the ICE-5G LGM topography. Because of the uncertainties in the extent of the Fennoscandian ice sheet in the Eastern part of the Kara Sea, we consider two more realistic river routing scenarios. The first scenario is characterised by the presence of an ice dammed lake south of the Fennoscandian ice sheet, and corresponds to the ICE-5G topography. This lake is fed by the Ob and Yenisei rivers. In the second scenario, both these rivers flow directly into the Arctic Ocean, which is more consistent with the latest QUEEN ice sheet margin reconstructions. We study the impact of these changes on the LGM climate as simulated by the IPSL_CM4 model and focus on the overturning thermohaline circulation. A comparison with a classical LGM simulation performed using the same model and modern river basins as designed in the PMIP2 exercise leads to the following conclusions: (1) The discharge into the North Atlantic Ocean is increased by 2,000 m3/s between 38° and 54°N in both simulations that contain LGM river routing, compared to the classical LGM experiment. (2) The ice dammed lake is shown to have a weak impact, relative to the classical simulation, both in terms of climate and ocean circulation. (3) In contrast, the North Atlantic deep convection and meridional overturning are weaker than during the classical LGM run if the Ob and Yenisei rivers flow directly into the Arctic Ocean. The total discharge into the Arctic Ocean is increased by 31,000 m3/s, relative to the classical LGM simulation. Consequentially, northward ocean heat transport is weaker, and sea ice more extensive, in better agreement with existing proxy data.


Ice sheet LGM river routing Thermohaline circulation 


  1. Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and δ18O of the Glacial Deep Ocean. Science 298(5599):1769–1773CrossRefGoogle Scholar
  2. Alkama R, Kageyama M, Ramstein G (2006) Freshwater discharges in a simulation of the Last Glacial Maximum climate using improved river routing. Geophys Res Lett 33:L21709. doi: 101029/2006GL027746 CrossRefGoogle Scholar
  3. Boyle EA, Keigwin LD (1987) North Atlantic thermohaline circulation during the past 20,000 years linked to height latitude surface temperature. Nature 330:35–40CrossRefGoogle Scholar
  4. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3:261–277. Scholar
  5. Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702. doi: 10.1029/2005GL024546 CrossRefGoogle Scholar
  6. Broecker WS (1994) Massive iceberg discharges as triggers for global climate change. Nature 372:421–424CrossRefGoogle Scholar
  7. CLIMAP Project Members (1981), Seasonal reconstruction of the Earth’s surface at the Last Glacial Maximum. Geological society of America Map, Chart Series, C-36Google Scholar
  8. Dallenbach A, Blunier T, Fluckiger J, Stauffer B, Chappellaz J, Raynaud D (2000) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophys Res Lett 27(7):1005–1008CrossRefGoogle Scholar
  9. Duplessy JC, Moyes J, Pujol C (1980) Deep water formation in the North Atlantic Ocean during the last ice age. Nature 286:479–482CrossRefGoogle Scholar
  10. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646CrossRefGoogle Scholar
  11. Fluckiger J, Dallenbach A, Blunier T, Stauffer B, Stocker F, Raynaud D, Barnola JM (1999) Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285(5425):227–230CrossRefGoogle Scholar
  12. Forman SL et al (1999) Late Quaternary stratigraphy of western Yamal Peninsula, Russia: new constraints on the configuration of the Eurasian ice sheet. Geology 27:807–810CrossRefGoogle Scholar
  13. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefGoogle Scholar
  14. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–159CrossRefGoogle Scholar
  15. Gataullin V, Mangerud J, Svendsen JI (2001) The extent of the Late Weichselian ice sheet in the southeastern Barents Sea. Glob Planet Change 31:453–474CrossRefGoogle Scholar
  16. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703. doi: 10.1029/2005GL023209 CrossRefGoogle Scholar
  17. Grosswald MG (1998) Late-Weichselian ice sheets in Arctic and Pacific Siberia. Quat Int 45:3–18CrossRefGoogle Scholar
  18. Grosswald MG, Hughes TJ (2002) The Russian component of an Arctic ice sheet during the Last Glacial Maximum. Quat Sci Rev 21:121–146CrossRefGoogle Scholar
  19. Hemming SR (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42:RG1005CrossRefGoogle Scholar
  20. Hewitt CD, Broccoli AJ, Mitchell JFB, Stouffer RJ (2001) A coupled model study of the last glacial maximum: was part of the North Atlantic relatively warm? Geophys Res Lett 28(8):1571–1574CrossRefGoogle Scholar
  21. Hewitt CD, Stouffer RJ, Broccoli AJ, Mitchell JFB, Valdes PJ (2003) The effect of ocean dynamics in a coupled GCM simulation of the Last Glacial Maximum. Clim Dyn 20(2–3):203–218 Google Scholar
  22. Joussaume S, Taylor KE (2000) The Paleoclimate Modeling Intercomparison Project, in Paleoclimate Modelling Intercomparison Project (PMIP). In: Braconnot P (eds) Proceedings of the 3rd PMIP workshop. WCRP, La Huardière, pp 9–25Google Scholar
  23. Kageyama M, Laîné A, Abe-Ouchi A, Braconnot P, Cortijo E, Crucifix M, de Vernal A, Guiot J, Hewitt CD, Kitoh A, Kucera M, Marti O, Ohgaito R, Otto-Bliesner B, Peltier WR, Rosell-Melé A, Vettoretti G, Weber SL, Yu Y, MARGO Project members (2006) Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea-surface temperatures and pollen-based reconstructions. Quat Sci Rev 25:2082–2102CrossRefGoogle Scholar
  24. Kim SJ (2004) A coupled model simulation of ocean thermohaline properties of the last glacial maximum. Atmosphere-Ocean 42(3):213–220CrossRefGoogle Scholar
  25. Kim SJ, Flato GM, Boer GJ, McFarlane NA (2002) A coupled climate model simulation of the Last Glacial Maximum, part 1: transient multi-decadal response. Clim Dyn 19(5–6):515–537Google Scholar
  26. Kim SJ, Flato GM, Boer GJ (2003) A coupled climate model simulation of the last glacial maximum, Part 2: approach to equilibrium. Clim Dyn 20(6):635–661Google Scholar
  27. Kitoh A, Murakami S (2002) Tropical Pacific climate at the mid-Holocene and the Last Glacial Maximum simulated by a coupled ocean-atmosphere general circulation model. Paleoceanography 17(3):1047CrossRefGoogle Scholar
  28. Kitoh A, Murakami S, Koide HA (2001) Simulation of the last glacial maximum with a coupled atmosphere-ocean GCM. Geophys Res Lett 28(11):2221–2224CrossRefGoogle Scholar
  29. Kohfeld KE Harrison SP (2000). How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quat Sci Rev 19:321–346CrossRefGoogle Scholar
  30. Kucera M, Rosell-Mele A, Schneider R, Waelbroeck C, Weinelt M (2005) Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat Sci Rev 24(7–9):813–819CrossRefGoogle Scholar
  31. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45 No. RG2001Google Scholar
  32. Krinner G, Mangerud J, Jakobson M, Crucifix M, Ritz C, Svendsen JI (2004) Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature l427:429–432CrossRefGoogle Scholar
  33. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem Cycles 19:1015–1029CrossRefGoogle Scholar
  34. Lambeck K, Yokoyama Y, Purcell T (2002). Into and out of the Last Glacial Maximum: sea-level change during oxygen isotope Stages 3 and 2. Quat Sci Rev 21:343–360CrossRefGoogle Scholar
  35. Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  36. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi JJ-M, Elena, Ivanova V, Kissel C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann U, Peeters F, Yu E-F, Zahn R (2007) Atlantic Meridional overturning circulation during the Last Glacial Maximum. Science 316:66–69CrossRefGoogle Scholar
  37. McManus JF, Francois R, Gherardi J-M, Keigwin LD, Brown-Leger (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837CrossRefGoogle Scholar
  38. Madec G, Delecluse P, Imbard M, et Lévy C (1998) OPA 8.1 ocean general circulation model reference manual. Rapp Int, LODYC, France, 200ppGoogle Scholar
  39. Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378:165–167CrossRefGoogle Scholar
  40. Manabe S, Stouffer RJ (2000) Study of abrupt climate change by a coupled ocean–atmosphere model. Quat Sci Rev 19:285–299CrossRefGoogle Scholar
  41. Mangerud J, Jakobsson M, Alexanderson H, Astakhov V, Clarke G, Henriksen M, Hjort C, Krinner G, Lunkka J-P, Möller P, Murray A, Nikolskaya O, Saarnisto M, Svendsen JI (2004) Ice-dammed lakes and rerouting of the drainage of Northern Eurasia during the last glaciation. Quat Sci Rev 23:1313–1332CrossRefGoogle Scholar
  42. Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne J-L, Fairhead L, Filiberti M-A, Foujols M-A, Fichefet T, Friedlingstein P, Gosse H, Grandpeix J-Y, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, de Noblet N, Polcher J and Talandier C (2006) The new IPSL climate system model: IPSL-CM4, Note du Pôle de Modélisation no. 26, ISSN 1288–1619, 84pages,
  43. Ménot G, Bard E, Rostek F, Weijers J-W-H, Hopmans E-C, Schouten S, Damsté J-S (2006) Early reactivation of European rivers during the last deglaciation. Science 313:1623–1625CrossRefGoogle Scholar
  44. Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114CrossRefGoogle Scholar
  45. Ngo-Duc T, Laval K, Ramillien G, Polcher J, Cazenave A (2007) Validation of the land water storage simulated by organising carbon and hydrology in dynamic ecosystems (ORCHIDEE) with gravity recovery and climate experiment (GRACE) Data, Water Resources Research, 43: W04427. doi: 10.1029/2006WR004941
  46. Otto-Bliesner BL, Brady CE, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last Glacial Maximum and holocene climate in CCSM3. J Clim 19:2526–2544CrossRefGoogle Scholar
  47. Peltier WR (2004) Global Glacial Isostasy and the surface of the ice age earth: The ICE-5G (VM2) model and GRACE Annu Rev Earth Planet Sci 32:111–161CrossRefGoogle Scholar
  48. Peltier WR, Fairbanks FG (2006) Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat Sci Rev 25:3322–3337CrossRefGoogle Scholar
  49. Peltier W, Solheim L (2004) The climate of the Earth at Last Glacial Maximum: statistical equilibrium state and a mode of internal variability. Quat Sci Rev 23:335–357CrossRefGoogle Scholar
  50. Piotrowski AM, Goldstein SL, Hemming SR, Fairbanks RG (2005) Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 307:1933–1938CrossRefGoogle Scholar
  51. Shin S-I, Liu Z, Otto B-Bliesner, Brady EC, Kutzbach JE, Harrison SP (2003) A Simulation of the Last Glacial Maximum climate using the NCAR-CCSM. Clim Dyn 20:127–151. doi: 10.1007/s00382-002-0260-x Google Scholar
  52. Stouffer RJ, Seidov D, Haupt BJ (2007) Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J Clim 20(3):436–448CrossRefGoogle Scholar
  53. Svendsen JI, Astakhov VI, Bolshiyanov DY, Demidov I, Dowdeswell JA, Gataullin V, Hjort C, Hubberten HW, Larsen E, Mangerud J, Melles M, Moller P, Saarnisto M, Siegert MJ (1999) Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28:234–242CrossRefGoogle Scholar
  54. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, M. Houmark-Nielsen, Hubberten HW, Ingólfsson O, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud J, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) The late Quaternary ice sheet history of Nortern Eurasia, Quaternary Science Reviews special QUEEN volume. Quat Sci Rev 23:1229–1271CrossRefGoogle Scholar
  55. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic Meridional Overturning Circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33:L07711. doi: 10.1029/2006GL025765 CrossRefGoogle Scholar
  56. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28:291–305CrossRefGoogle Scholar
  57. Tarasov, Peltier WR (2005) Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435:662–665CrossRefGoogle Scholar
  58. Tarasov L, Peltier WR (2006) A calibrated deglacial drainage chronology for the North American continent: evidence of an Arctic trigger for the Younger Dryas. Quat Sci Rev 25: 659–688CrossRefGoogle Scholar
  59. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443CrossRefGoogle Scholar
  60. Valcke S, Declat D, Redler R, Ritzdorf H, Schoenemeyer T, Vogelsang R (2004) The PRISM coupling and I/O system. In: VECPAR’04, Proceedings of the 6th international meeting, vol 1. High performance computing for computational science, Universidad Politecnica de Valencia, ValenciaGoogle Scholar
  61. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  62. Weaver AJ, Eby M, Fanning AF, Wiebe EC (1998) Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the Last Glacial Maximum. Nature 394:847–853CrossRefGoogle Scholar
  63. Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Clim Past 3:51–64CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ramdane Alkama
    • 1
    • 2
  • M. Kageyama
    • 1
  • G. Ramstein
    • 1
  • O. Marti
    • 1
  • P. Ribstein
    • 2
  • D. Swingedouw
    • 1
  1. 1.Laboratoire des Sciences du Climat et de l’EnvironnementIPSLGif-sur-Yvette CedexFrance
  2. 2.Structure et fonctionnement des systèmes hydriques continentaux (Sisyphe)Université Pierre et Marie CurieParisFrance

Personalised recommendations