Climate Dynamics

, Volume 30, Issue 7–8, pp 745–762

ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations

  • W. Zheng
  • P. Braconnot
  • E. Guilyardi
  • U. Merkel
  • Y. Yu
Article

Abstract

We analyze how the characteristics of El Niño-Southern Oscillation (ENSO) are changed in coupled ocean–atmosphere simulations of the mid-Holocene (MH) and the Last Glacial Maximum (LGM) performed as part of the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2). Comparison of the model results with present day observations show that most of the models reproduce the large scale features of the tropical Pacific like the SST gradient, the mean SST and the mean seasonal cycles. All models simulate the ENSO variability, although with different skill. Our analyses show that several relationships between El Niño amplitude and the mean state across the different control simulations are still valid for simulations of the MH and the LGM. Results for the MH show a consistent El Niño amplitude decrease. It can be related to the large scale atmospheric circulation changes. While the Northern Hemisphere receives more insolation during the summer time, the Asian summer monsoon system is strengthened which leads to the enhancement of the Walker circulation. Easterlies prevailing over the central eastern Pacific induce an equatorial upwelling that damps the El Niño development. Results are less conclusive for 21ka. Large scale dynamic competes with changes in local heat fluxes, so that model shows a wide range of responses, as it is the case in future climate projections.

References

  1. An SI, Timmermann A, Bejarano L, Jin F, Justino F, Liu Z (2004) Modeling evidence for enhanced El Niño-Southern Oscillation amplitude during the Last Glacial Maximum. Paleoceang 19:4009. doi:10.1029/2004PA001020
  2. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712CrossRefGoogle Scholar
  3. Berger AL (1978) Long-term variations of caloric insolation resulting from the earth’s orbital elements. Q Res 9:139–167CrossRefGoogle Scholar
  4. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  5. Braconnot P, Marti O, Joussaume S, Leclainche Y (2000) Ocean Feedback in Response to 6 Kyr BP Insolation. J Clim 13:1537–1553CrossRefGoogle Scholar
  6. Braconnot P, Otto-Bleisner BL, Harrison S, Joussaume J, Peterschmitt JY, Abe-Ouchi A, Crucifix M, Fichefet, Hewitt C, Kageyama M, Kitoh A, Laîné A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007a) Results of Pmip2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Clim Past 3(2):261–277CrossRefGoogle Scholar
  7. Braconnot P, Otto-Bleisner BL, Harrison S, Joussaume J, Peterschmitt JY, Abe-Ouchi A, Crucifix M, Fichefet, Hewitt C, Kageyama M, Kitoh A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007b) Results of Pmip2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate of the Past 3(2):279–296Google Scholar
  8. Braconnot P, Hourdin F, Bony S, Dufresne JL, Grandpeix JY, Marti O (2007c) Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model. Clim Dyn. doi:10.1007/s00382–007–0244-y
  9. Brown J, Collins M, Tudhope A, Toniazzo T (2007) Modelling mid-Holocene tropical climate and ENSO variability: towards constraining predictions of future change with palaeo-data. Clim. Dyn. doi:10.1007/s00382–007-0270-9
  10. Chang P (1996) The role of the dynamic ocean-atmosphere interactions in tropical seasonal cycle. J Clim 9:2973–2985CrossRefGoogle Scholar
  11. Chang P, Ji L, Wang B, Li T (1995) Interaction between the seasonal cycle and El Niño-Southern oscillation in an intermediate coupled ocean–atmosphere model. J Atmos Sci 52:2353–2372CrossRefGoogle Scholar
  12. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196CrossRefGoogle Scholar
  13. Clement AC, Seager R, Cane MA (1999) Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanog 14:441–456CrossRefGoogle Scholar
  14. Clement AC, Seager R, Cane MA (2000) Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanog 15:731–737CrossRefGoogle Scholar
  15. Cole J (2001) A slow dance for El Niño. Science 291:1461–1497CrossRefGoogle Scholar
  16. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community Climate System Model Version 3 (CCSM3). J Clim 19:2122–2143CrossRefGoogle Scholar
  17. Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean–atmosphere interactions: bridging measurements and theory for El Niño. J Clim 14:3086–3101CrossRefGoogle Scholar
  18. Gill AE (1982) Atmosphere–Ocean dynamics. Academic, San DiegoGoogle Scholar
  19. Goswami BN, Krishnamurthy V, Annamalai H (1999) A broad-scale circulation index for the interannual variablity of the Indian summer monsoon. Q J R Meteorol Soc 125:611–633CrossRefGoogle Scholar
  20. Gu D, Philander SG (1995) Secular changes of annual and inter-annual variability in the tropics during the past century. J Clim 8:864–876CrossRefGoogle Scholar
  21. Guilyardi E (2006) El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348, doi:10.1007/s00382-005-0084-6 CrossRefGoogle Scholar
  22. Harrison SP, Braconnot P, Joussaume S, Hewitt C, Stouffer RJ (2002) Fourth international workshop of The Palaeoclimate Modelling Intercomparison Project (PMIP): launching PMIP Phase II. EOS 83:447CrossRefGoogle Scholar
  23. Jacob RL, Schafer C, Foster I, Tobis M, Anderson J (2001) Computational Design and performance of the fast ocean-atmosphere model, ver. 1. In: Alexandrov VN, Dongarra JJ, Juliano BA, Renner RS, Tan CJK (eds) Proceedings of the international conference on computational science (ICCS), LNCS 2073. Springer, Heidelberg, pp175–184Google Scholar
  24. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  25. K-1 model developers (2004) K-1 coupled model (MIROC) description. Technical Report 1, Center for Climate System Research, University of TokyoGoogle Scholar
  26. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  27. Koutavas A, Lynch-Stieglitz J, Marchitto THJ, Sachs JP (2002) El Niño-like pattern in ice age tropical Pacific sea surface temperature. Science 297:226–230CrossRefGoogle Scholar
  28. Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C, Delecluse P, DeWitt D, Fairhead L, Flato G, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Le Treut H, Li T, Manabe S, Marti O, Mechoso C, Meehl G, Power S, Roeckner E, Sirven J, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Zebiak S (2001) Ensip: The El Nino Simulation Intercomparison Project. Clim Dyn 18:255–276CrossRefGoogle Scholar
  29. Lea DW, Pak DK, Spero HJ (2000) Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations. Science 289:1719–1724CrossRefGoogle Scholar
  30. Liu Z, Kutzbach J, Wu L (2000) Modeling climate shift of El Niño variability in the Holocene. Geophys Res Lett 27:2265–2268CrossRefGoogle Scholar
  31. Liu Z, Brady E, Lynch-Steiglitz J (2003) Global ocean response to orbital forcing in the Holocene. Paleoceanograpgy 18(2):1041. doi:10.1029/2002PA00819 CrossRefGoogle Scholar
  32. Liu ZY, Shin SI, Webb RS, Lewis W, Otto-Bliesner BL (2005) Atmospheric CO2 forcing on glacial thermohaline circulation and climate. Geophys Res Lett 32(2):L02706CrossRefGoogle Scholar
  33. Marti O et al (2005) The new IPSL climate system model: IPSL-CM4. Technical report, Institut Pierre Simon Laplace des Sciences de l’Environnement Global IPSL Case101 4 place Jussieu Paris FranceGoogle Scholar
  34. Otto-Bliesner BL, Brady EC, Shin SI, Liu Z, Shields C (2003) Modeling El Niño and its tropical teleconnections during the last glacial-interglacial cycle. Geophys Res Lett 30(23):2198. doi:10.1029/2003GL018553 CrossRefGoogle Scholar
  35. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359 CrossRefGoogle Scholar
  36. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  37. Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  38. Rodbell DT, Seltzer GO, Anderson DM, Abbott MB, Enfield DB, Newman JH (1999) An 15000-year record of El Niño-driven alleviation in southwestern Ecurador. Science 283:1516–1519CrossRefGoogle Scholar
  39. Shin SI, Liu Z, B. Otto-Bliesner L, Brady EC, Kutzbach JE, Harrison SP (2003) A simulation of the Last Glacial Maximum Climate using the NCAR CSM. Clim Dyn 20:127–151Google Scholar
  40. Sun DZ, Liu ZY (1996) Dynamic ocean–atmosphere coupling: a thermostat for the tropics. Science 272:1148–1150CrossRefGoogle Scholar
  41. Wang C, Picaut J (2004) Understanding ENSO Physics—a review. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate: the ocean–atmosphere interaction. Geophysical Monograph Series, AGU, Washington DC, pp 21–48Google Scholar
  42. Wu G, Meng W (1998) Gearing between the Indo-monsoon circulation and Pacific Walker circulation and ENSO I: Data analyses (in Chinese). Chin J Atmos Sci 22:470–480Google Scholar
  43. Yukimoto S, Noda A (2002) Improvements of the Meteorological Research Institute Global Ocean–atmosphere Coupled GCM (MRI-CGCM2) and its climate sensitivity. Tech Report10 NIES JapanGoogle Scholar
  44. Yu Y, Yu R., Zhang X, Liu H (2002) A flexible global coupled climate model. Adv Atmos Sci 19:169–190CrossRefGoogle Scholar
  45. Yu Y, Zhang X, Guo Y (2004) Global coupled ocean–atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–455CrossRefGoogle Scholar
  46. Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Weather Rev 115:2262–2278CrossRefGoogle Scholar
  47. Zhao Y, Braconnot P, Harrison SP, Yiou P, Marti O (2007) Simulated changes in the relationship between tropical ocean temperatures and the western African monsoon during the mid-Holocene. Clim Dyn 28:533–551CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • W. Zheng
    • 1
    • 2
    • 6
  • P. Braconnot
    • 2
  • E. Guilyardi
    • 3
    • 4
  • U. Merkel
    • 5
  • Y. Yu
    • 1
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Laboratoire des Sciences du Climat et de l’Environnement (IPSL/LSCE), Gif-sur-YvetteParisFrance
  3. 3.Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques (IPSL/LOCEAN)ParisFrance
  4. 4.Walker InstituteUniversity of ReadingReadingUK
  5. 5.FB5 Geosciences, Department of Geosystem ModelingUniversity of BremenBremenGermany
  6. 6.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations