Climate Dynamics

, Volume 29, Issue 6, pp 591–613 | Cite as

Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework

  • T. M. Lenton
  • R. Marsh
  • A. R. Price
  • D. J. Lunt
  • Y. Aksenov
  • J. D. Annan
  • T. Cooper-Chadwick
  • S. J. Cox
  • N. R. Edwards
  • S. Goswami
  • J. C. Hargreaves
  • P. P. Harris
  • Z. Jiao
  • V. N. Livina
  • A. J. Payne
  • I. C. Rutt
  • J. G. Shepherd
  • P. J. Valdes
  • G. Williams
  • M. S. Williamson
  • A. Yool
Article

Abstract

We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude–latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model.

Supplementary material

382_2007_254_MOESM1_ESM.pdf (188 kb)
Supplementary material

References

  1. Abramson D, Buyya R, Giddy J (2002) A computational economy for Grid computing and its implementation in the Nimrod-G resource broker. Future Generation Comput Syst 18(8):1061–1074CrossRefGoogle Scholar
  2. Allcock B, Bester J, Bresnahan J, Chervenak AL, Foster I, Kesselman C, Meder S, Nefedova V, Quesnal D, Tuecke S (2002) Data management and transfer in high performance computational Grid environments. Parallel Comput J 28(5):749–771CrossRefGoogle Scholar
  3. Betts AK (1986) A new convective adjustment scheme. 1. observational and theoretical basis. Q J R Meteorol Soc 112:667–691Google Scholar
  4. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov I, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586CrossRefGoogle Scholar
  5. Czajkowski K, Foster I, Karonis N, Kesselman C, Martin S, Smith W, Tuecke S (1998) A resource management architecture for metacomputing systems. In: Proceedings of IPPS/SPDP ’98 workshop on job scheduling strategies for parallel processing, pp 62–82Google Scholar
  6. de Vries P, Weber SL (2005) The atlantic freshwater budget as a dianostic for the existence of a stable shut-down of the meridional overturning circulation. Geophys Res Lett 32:L09606CrossRefGoogle Scholar
  7. Edwards NR, Marsh R (2005) Uncertainities due to transport-parameter sensitivity in an efficient 3-D ocean-climate model. Clim Dyn 24:415–433CrossRefGoogle Scholar
  8. Eres MH, Pound GE, Jiao Z, Wason JL, Xu F, Keane AJ, Cox SJ (2005) Implementation and utilisation of a grid-enabled problem solving environment in Matlab. Future Generation Comput Syst 21(6):920–929CrossRefGoogle Scholar
  9. Fanning AG, Weaver AJ (1996) An atmospheric energy-moisture model: climatology, interpentadal climate change and coupling to an ocean general circulation model. J Geophys Res 101:15111–15128CrossRefGoogle Scholar
  10. de Forster PM, Blackburn M, Glover R, Shine KP (2000) An examinatation of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Clim Dyn 16:833–849CrossRefGoogle Scholar
  11. Foster I, Kesselman C (1999) Globus: a toolkit-based Grid architecture. In: Foster I, Kesselman C (eds) The grid: blueprint for a new computing infrastructure. Morgan Kaufman Publishers, Inc., San Francisco, pp 259–278Google Scholar
  12. Foster I, Kesselman C, Tuecke S (2001) The anatomy of the grid: enabling scalable virtual organizations. Int J High Perform Comput Appl 15(3):200–222CrossRefGoogle Scholar
  13. Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005a) The planet simulator: towards a user friendly model. Meteorol Z 14(3):299–304CrossRefGoogle Scholar
  14. Fraedrich K, Kirk E, Luksch U, Lunkeit F (2005b) The Portable University Model of the Atmosphere (PUMA): storm track dynamics and low-frequency variability. Meteorol Z 14(6):735–745CrossRefGoogle Scholar
  15. Ganachaud A (2003) Large-scale mass transports, water mass formation, and diffusivities estimated from world ocean circulation experiment (WOCE) hydrographic data. J Geophys Res (Oceans) 108(C7):3213CrossRefGoogle Scholar
  16. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res (Oceans) 104(C10):23337–23355CrossRefGoogle Scholar
  17. Griffies SM (1998) The Gent-McWilliams skew flux. J Phys Oceanogr 28:831–841CrossRefGoogle Scholar
  18. Hargreaves JC, Annan JD, Edwards NR, Marsh R (2004) An efficient climate forecasting method using an intermediate complexity Earth System Model and the ensemble Kalman filter. Clim Dyn 23:745–760CrossRefGoogle Scholar
  19. Hey T, Trefethen AE (2002) The UK e-Science core programme and the grid. Future Generation Comput Syst 18(8):1017–1031CrossRefGoogle Scholar
  20. Hoskins BJ, Simmons AJ (1975) A multi-layer spectral model and the semi-implicit method. Q J R Meteorol Soc 101:637–655CrossRefGoogle Scholar
  21. Jayne SR, Marotzke J (2001) The dynamics of ocean heat transport variability. Rev Geophys 39:385–411CrossRefGoogle Scholar
  22. Keane AJ (2003) The OPTIONS design exploration system: reference manual and user guide. http://www.soton.ac.uk/∼ajk/options.ps
  23. von Laszewski G, Foster I, Gawor J, Lane P (2001) A Java commodity grid kit. Concurr Comput Pract Exp 13(8–9):643–662Google Scholar
  24. Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Clim 13:1809–1813CrossRefGoogle Scholar
  25. Lenton TM, Williamson MS, Edwards NR, Marsh R, Ridgwell AJ, Price AR, Shepherd JG, Cox SJ, The GENIE team (2006) Millennial timescale carbon cycle and climate change in an efficient Earth system model. Clim Dyn 26:687–711CrossRefGoogle Scholar
  26. Louis JF (1986) Forecast model research manual 3: physical parameterisation. European Centre for Medium Range Weather ForecastsGoogle Scholar
  27. Marsh R, Yool A, Lenton TM, Gulamali MY, Edwards NR, Shepherd JG, Krznaric M, Newhouse S, Cox SJ (2004) Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model. Clim Dyn 23:761–777CrossRefGoogle Scholar
  28. Morcrette JJ (1990) Impact of changes to the radiative transfer paramterisations plus cloud optical properties in the ECMWF model. Monthly Weather Rev 118:847–873CrossRefGoogle Scholar
  29. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772CrossRefGoogle Scholar
  30. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT a dynamic alternative to mixed boundary conditions in ocean models. Tellus A 50:348–367CrossRefGoogle Scholar
  31. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: Model description and performance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  32. Pope V, Gallani M, Rowntree P, Stratton R (2000) The impact of new physical paramterisations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  33. Price AR, Xue G, Yool A, Lunt DJ, Valdes PJ, Lenton TM, Wason JL, Pound GE, Cox SJ, the GENIE team (2006) Optimisation of integrated Earth system model components using grid-enabled data management and computation. Concurr Comput Pract Exp (in press)Google Scholar
  34. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605CrossRefGoogle Scholar
  35. Roche DM, Dokken TM, Goosse H, Renssen H, Weber SL (2006) Climate of the last glacial maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model. Clim Past Discussions 2:1105–1153Google Scholar
  36. Schlesinger ME, Yin J, Yohe GW, Andronova NG, Malyshev S, Li B (2006) Assessing the risk of a collapse of the Atlantic thermohaline circulation. In: Schellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, pp 37–47Google Scholar
  37. Schmittner A, Appenzeller C, Stocker TF (2000) Enhanced Atlantic freshwater export during El Nino. Geophys Res Lett 27:1163–1166CrossRefGoogle Scholar
  38. Slingo JM (1987) The development and verification of a cloud prediction scheme for the ECMWF model. Q J R Meteorolo Soc 113:899–927CrossRefGoogle Scholar
  39. Smethie WM, Fine RA (2001) Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep Sea Res I 48:189–215CrossRefGoogle Scholar
  40. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230CrossRefGoogle Scholar
  41. Stouffer RJ, Manabe S (2003) Equilibrium response of thermohaline circulation to large changes in atmospheric CO2 concentration. Clim Dyn 20:759–773CrossRefGoogle Scholar
  42. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387Google Scholar
  43. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16:3213–3226CrossRefGoogle Scholar
  44. Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the Condor experience. Concurr Comput Pract Exp 17(2–4):323–356CrossRefGoogle Scholar
  45. Thorpe RB, Gregory JM, Johns TC, Wood RA, Mitchell JFB (2001) Mechanisms determinging the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J Clim 14:3102–3116CrossRefGoogle Scholar
  46. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  47. Wang H, Birchfield GE (1992) An energy-salinity balance climate model: Water vapor transport as a cause of changes in the global thermohaline circulation. J Geophys Res 97(C2):2335–2346Google Scholar
  48. Welch V, Siebenlist F, Foster I, Bresnahan J, Czajkowski K, Gawor J, Kesselman C, Meder S, Pearlman L, Tuecke S (2003) Security for Grid services. In: Proceedings of the 12th IEEE international symposium on high performance distributed computing. The Institute of Electrical and Electronics Engineers, Inc., Seattle, pp 48–57Google Scholar
  49. Wright DG, Stocker TF (1991) A zonally averaged ocean model for the thermohaline circulation. Part 1: Model development and flow dynamics. J Phys Oceanogr 21:1713–1724CrossRefGoogle Scholar
  50. YarKhan A, Seymour K, Sagi K, Shi Z, Dongarra J (2006) Recent developments in Gridsolve. Int J High Perform Comput Appl 20(1):131–141CrossRefGoogle Scholar
  51. Yin J, Schlesinger ME, Andronova NG, Malyshev S, Li B (2006) Is a shutdown of the thermohaline circulation irreversible? J Geophys Res (Oceans) 111:D12104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • T. M. Lenton
    • 1
    • 2
  • R. Marsh
    • 3
  • A. R. Price
    • 4
  • D. J. Lunt
    • 5
  • Y. Aksenov
    • 3
  • J. D. Annan
    • 6
  • T. Cooper-Chadwick
    • 4
  • S. J. Cox
    • 4
  • N. R. Edwards
    • 7
  • S. Goswami
    • 1
  • J. C. Hargreaves
    • 6
  • P. P. Harris
    • 8
  • Z. Jiao
    • 4
  • V. N. Livina
    • 1
  • A. J. Payne
    • 5
  • I. C. Rutt
    • 5
  • J. G. Shepherd
    • 2
    • 3
  • P. J. Valdes
    • 5
  • G. Williams
    • 5
  • M. S. Williamson
    • 2
    • 9
  • A. Yool
    • 3
  1. 1.School of Environmental SciencesUniversity of East AngliaNorwichUK
  2. 2.Tyndall Centre, UK
  3. 3.National Oceanography CentreUniversity of SouthamptonSouthamptonUK
  4. 4.Southampton e-Science CentreUniversity of SouthamptonSouthamptonUK
  5. 5.School of Geographical SciencesUniversity of BristolBristolUK
  6. 6.Frontier Research Centre for Global ChangeYokohamaJapan
  7. 7.Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), Earth SciencesOpen UniversityMilton KeynesUK
  8. 8.Centre for Ecology and HydrologyWallingfordUK
  9. 9.School of Physics and AstronomyUniversity of LeedsLeedsUK

Personalised recommendations