Climate Dynamics

, Volume 29, Issue 6, pp 565–574 | Cite as

Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century?

  • T. J. Raddatz
  • C. H. Reick
  • W. Knorr
  • J. Kattge
  • E. Roeckner
  • R. Schnur
  • K.-G. Schnitzler
  • P. Wetzel
  • J. Jungclaus
Article

Abstract

Global warming caused by anthropogenic CO2 emissions is expected to reduce the capability of the ocean and the land biosphere to take up carbon. This will enlarge the fraction of the CO2 emissions remaining in the atmosphere, which in turn will reinforce future climate change. Recent model studies agree in the existence of such a positive climate–carbon cycle feedback, but the estimates of its amplitude differ by an order of magnitude, which considerably increases the uncertainty in future climate projections. Therefore we discuss, in how far a particular process or component of the carbon cycle can be identified, that potentially contributes most to the positive feedback. The discussion is based on simulations with a carbon cycle model, which is embedded in the atmosphere/ocean general circulation model ECHAM5/MPI-OM. Two simulations covering the period 1860–2100 are conducted to determine the impact of global warming on the carbon cycle. Forced by historical and future carbon dioxide emissions (following the scenario A2 of the Intergovernmental Panel on Climate Change), they reveal a noticeable positive climate–carbon cycle feedback, which is mainly driven by the tropical land biosphere. The oceans contribute much less to the positive feedback and the temperate/boreal terrestrial biosphere induces a minor negative feedback. The contrasting behavior of the tropical and temperate/boreal land biosphere is mostly attributed to opposite trends in their net primary productivity (NPP) under global warming conditions. As these findings depend on the model employed they are compared with results derived from other climate–carbon cycle models, which participated in the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP).

Keywords

Climate Carbon cycle Feedback Global warming C4MIP NPP 

References

  1. Boschetti L, Eva HD, Brivio PA, Gregoire JM (2004) Lessons to be learned from the comparison of three satellite-derived biomass burning products. Geophys Res Lett 31:L21501 doi:10.1029/2004GR021229CrossRefGoogle Scholar
  2. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136CrossRefGoogle Scholar
  3. Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538CrossRefGoogle Scholar
  4. Cox PM, Betts RA, Bunton CB, Essery RL, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203CrossRefGoogle Scholar
  5. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon–cycle feedbacks in a coupled climate model. Nature 408:184–187CrossRefGoogle Scholar
  6. Cox PM, Betts RA, Collins M, Harris PP, Huntingforth C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156 doi:10.1007/s00704–004–0049–4CrossRefGoogle Scholar
  7. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–373CrossRefGoogle Scholar
  8. Cuntz M, Ciais P, Hoffmann G, Knorr W (2003) A comprehensive global three-dimensional model of d18O in atmospheric CO2: 1. Validation of surface processes. J Geophys Res 108(D17):4527 doi:10.1029/2002JD003153CrossRefGoogle Scholar
  9. Farquhar GD, von Caemmerer S, Berry JA, (1980) A biogeochemical model of photosynthesis in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  10. Friedlingstein P, Dufresne J-L, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus 55B:692–700Google Scholar
  11. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler K-G, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate - carbon cycle feedback analysis, results from the C4MIP model intercomparison. J Climate 19:3337–3353 doi:10.1175JCLI3800.1CrossRefGoogle Scholar
  12. Global Carbon Project (2003) Science framework and implementation. In: Canadell JG, Dickinson R, Hibbard K, Raupach M, Young O (eds) Earth system science partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No. 1, Global Carbon Project Report No. 1, 69 pp, CanberraGoogle Scholar
  13. Houghton RA (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus 55B:378–390Google Scholar
  14. Jones PD, New M, Parker DM, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37(2). doi:10.1029/1999RG900002Google Scholar
  15. Jones CD, Cox PM (2001) Modeling the volcanic signal in the atmospheric CO2 record. Global Biogeochem Cycles 15:453–465CrossRefGoogle Scholar
  16. Jones CD, Collins M, Cox PM, Spall SA (2001) The carbon cycle response to ENSO: a coupled climate-carbon cycle model study. J Climate 14:4113–4129CrossRefGoogle Scholar
  17. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Climate 19:3952–3972. doi:10.1175JCLI3827.1CrossRefGoogle Scholar
  18. Kattge J, Knorr W (2007) The temperature dependence of photosynthetic capacity in a photosynthesis model acclimates to plant growth temperature: a re-analysis of data from 36 species. Plant Cell Environ (accepted)Google Scholar
  19. Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak RidgeGoogle Scholar
  20. King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312. doi:10.1126/Science.1114166 Google Scholar
  21. Knorr W (2000) Annual and interannual CO2 exchange of the terrestrial biosphere: Process based simulations and uncertainties. Global Ecol Biogeogr 9:225–252CrossRefGoogle Scholar
  22. Knorr W, Heimann M (2001) Uncertainties in global terrestrial biosphere modeling. Part II: global constraints for a processed-based vegetation model. Global Biogeoch Cycles 15:227–246CrossRefGoogle Scholar
  23. Knorr W, Prentice IC, House JI, Holland EA (2005a) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301CrossRefGoogle Scholar
  24. Knorr W, Scholze M, Gobron N, Pinty B, Kaminski T (2005b) Global-scale drought caused atmospheric CO2 increase. Eos Trans AGU 86(18): 178CrossRefGoogle Scholar
  25. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: Plants face the future. Annu Rev Plant Biol 55:591–628. doi: 10.1146/annurev.arplant.55.031903.141610CrossRefGoogle Scholar
  26. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics data base and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21:1303–1330. doi: 10.1080/014311600210191CrossRefGoogle Scholar
  27. Marland G, Boden TA, Andres RJ (2003) Global, regional and national emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak RidgeGoogle Scholar
  28. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell 5:91–127CrossRefGoogle Scholar
  29. Matthews HD, Eby M., Weaver AJ, Hawkins BJ (2005) Primary productivity control of simulated carbon cycle–climate feedbacks. Geophys Res Lett 32:L14708. doi:10.1029/2005GL022941CrossRefGoogle Scholar
  30. Peylin P, Bousquet P, Le Quere C, Sitch S, Friedlingstein P, McKinley G, Gruber N, Rayner P, Ciais P (2005) Multiple constraints on regional CO2 flux variations over land and oceans. Global Biogeochem Cycles 19:GB1011. doi:10.1029/2003GB002214Google Scholar
  31. Prentice IC et al (2001) The carbon cycle and atmospheric CO2. In: Houghton JT, Yihui D (eds) The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report. Cambridge University Press, New York, chap. 3, pp 185–237Google Scholar
  32. Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9:23–36CrossRefGoogle Scholar
  33. Rayner PJ, Scholze M, Knorr W, Kaminski T, Giering R, Widmann H (2005) Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochem Cycles 19:GB2026. doi:10.1029/2004GB002254CrossRefGoogle Scholar
  34. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U., Tompkins A (2003) The general circulation model ECHAM5. Part I: Model description. Report 349, Max-Planck-Institut for Meteorology, HamburgGoogle Scholar
  35. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2005) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Climate 19:3771–3791. doi:10.1175JCLI3824.1CrossRefGoogle Scholar
  36. Roedenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos Chem Phys Discuss 3:2575–2659CrossRefGoogle Scholar
  37. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Lewis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9:161–185CrossRefGoogle Scholar
  38. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects. Deep-Sea Res 49:1601–1622CrossRefGoogle Scholar
  39. Tans PP, Conway TJ (2005) Monthly atmospheric CO2 mixing ratios from the NOAA CMDL carbon cycle cooperative global air sampling network, 1968–2002. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak RidgeGoogle Scholar
  40. Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753. doi:10.1007/s00382–005-0057-9CrossRefGoogle Scholar
  41. Wetzel P, Winguth A, Maier-Reimer E (2005) Sea-to-air CO2 fluxes from 1948 to 2003. Global Biogeochem Cycles 19:GB2005. doi:10.1029/2004GB002339Google Scholar
  42. Zeng N, Qian H, Munoz E, Iacono R (2004) How strong is carbon cycle-climate feedback under global warming? Geophys Res Lett 31:L20203. doi:10.1029/2004GL020904Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • T. J. Raddatz
    • 1
    • 3
  • C. H. Reick
    • 1
    • 3
  • W. Knorr
    • 1
    • 4
  • J. Kattge
    • 1
  • E. Roeckner
    • 2
  • R. Schnur
    • 2
  • K.-G. Schnitzler
    • 2
  • P. Wetzel
    • 2
  • J. Jungclaus
    • 2
  1. 1.Max Planck Institute for BiogeochemistryJenaGermany
  2. 2.Max Planck Institute for MeteorologyHamburgGermany
  3. 3.Max Planck Institute for MeteorologyHamburgGermany
  4. 4.QUEST, University of BristolBristolUK

Personalised recommendations