Climate Dynamics

, Volume 29, Issue 5, pp 501–520 | Cite as

Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model

  • P. Braconnot
  • F. Hourdin
  • S. Bony
  • J. L. Dufresne
  • J. Y. Grandpeix
  • O. Marti


The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.



We would like to thank all IPSL people who participate to the development of the IPSL_CM4 model. We also thank Laurent Fairhead for the introduction of the convection schemes in the LMDZ model, and Ionela Musat for the adjustments of the climatology. Computer time was provided by Centre National de la Recherche Scientifique (IDRIS computing center) and Commissariat à l’Energie Atomique (centre CCRT computing center). This work is a contribution to the european project ENSEMBLES (Project no. GOCE-CT-2003-505539) and to the french project PNEDC-MC2.


  1. Barkstrom BR (1984) The earth radiation budget experiment (ERBE). Bull Am Meteorol Soc 65:1170–1185CrossRefGoogle Scholar
  2. Bentamy A, Quilfen Y, Gohin F, Grima N, Lenaour M, Servain J (1996) Determination and validation of average wind fields from ERS-1 scatterometer measurements. Global Atmos Ocean Syst 4(1):1–29Google Scholar
  3. Biasutti M, Sobel A, Kushnir Y (2006) Agcm precipitation biases in the tropical atlantic. J Clim 19(6):935–958CrossRefGoogle Scholar
  4. Bony S, Dufresne JL, Le Treut H, Morcrette J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22(2–3):71–86CrossRefGoogle Scholar
  5. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using toga coare data. J Atmos Sci 58(21):3158–3183CrossRefGoogle Scholar
  6. Braconnot P (1998) Tests de sensibilité avec le modèle d’atmosphère du lmd, en vue d’améliorer le couplage avec l’océan. note technique IPSL 2:39Google Scholar
  7. Braconnot P, Joussaume J, Marti O, de Noblet N (2000) Impact of ocean and vegetation feedback on 6 ka monsoon changes. Canada, WCRP-111, WMO/TD-No. 1007Google Scholar
  8. Chiang J, Vimont D (2004) Analogous pacific and atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17(21):4143–4158CrossRefGoogle Scholar
  9. Davey MK, Huddleston M, Sperber KR, Braconnot P, Bryan F, Chen D, Colman RA, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson TR, Latif M, Le Treut H, Li T, Manabe S, Mechoso CR, Meehl GA, Power SB, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington WM, Yoshikawa I, Yu JY, Yukimoto S, Zebiak SE (2002) Stoic: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18(5):403–420CrossRefGoogle Scholar
  10. Derbyshire SH, Beau I, Bechtold P, Grandpeix JY, Piriou JM, Redelsperger JL, Soares PMM (2004) Sensitivity of moist convection to environmental humidity. Q J R Meteorol Soc 130(604):3055–3079CrossRefGoogle Scholar
  11. Dufresne JL, Grandpeix JY (1996) Raccordement des modèles thermodynamiques de glace, d’océan et d’atmosphère. Note Interne 205, L.M.DGoogle Scholar
  12. Dufresne JL, Quaas J, Boucher O, Denvil S, Fairhead L (2005) Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century. Geophys Res Lett 32(21). doi:10.1029/2005GLO23619
  13. Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29(10):1405CrossRefGoogle Scholar
  14. Emanuel KA (1993) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  15. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res-Oceans 102(C6):12609–12646CrossRefGoogle Scholar
  16. Fu X, Wang B (2001) A coupled modeling study of the seasonal cycle of the pacific cold tongue. Part i: Simulation and sensitivity experiments. J Clim 14(5):765–779CrossRefGoogle Scholar
  17. Gordon C, Rosati A, Gudgel R (2000) Tropical sensitivity of a coupled model to specified isccp low clouds. J Clim 13(13):2239–2260CrossRefGoogle Scholar
  18. Grandpeix JY, Phillips V, Tailleux R (2004) Improved mixing representation in Emanuel’s convection scheme. Q J R Meteorol Soc 130(604):3207–3222CrossRefGoogle Scholar
  19. Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean–atmosphere gcms: the dominant role of the atmospheric component. J Clim 17(24):4623–4629CrossRefGoogle Scholar
  20. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Levan P, Li ZX, Lott F (2006) The lmdz4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813CrossRefGoogle Scholar
  21. IPCC (2001) Climate change 2001, the scientific basis. Cambridge University press, CambridgeGoogle Scholar
  22. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  23. Krinner G, Viovy N, de Noblet-Ducoudre N, Ogee J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice I (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem Cycles 19(1):GB1015CrossRefGoogle Scholar
  24. Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C, Delecluse P, DeWitt D, Fairhead L, Flato G, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Le Treut H, Li T, Manabe S, Marti O, Mechoso C, Meehl G, Power S, Roeckner E, Sirven J, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Zebiak S (2001) ENSIP: the el nino simulation intercomparison project. Clim Dyn 18(3–4):255–276CrossRefGoogle Scholar
  25. Levitus S (1982) Climatological atlas of the world ocean. NOAA Professional paper, WashingtonGoogle Scholar
  26. Li X (1999) Ensemble atmospheric gcm simulations of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  27. Ma CC, Mechoso CR, Robertson AW, Arakawa A (1996) Peruvian stratus clouds and the tropical pacific circulation: a coupled ocean–atmosphere gcm study. J Clim 9(7):1635–1645CrossRefGoogle Scholar
  28. Madec G, Delecluse P, Imbart M, Levy C (1998) Opa 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace 11:94 ppGoogle Scholar
  29. Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti MA, Foujols MA, Fichefet T, Friedlingstein P, Goosse H, Grandpeix JY, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, deNoblet N, Polcher J, Talandier C (2005) The new IPSL climate system model:IPSL-CM4. Note du Pôle de Modélisation n 26, ISSN 1288–1619Google Scholar
  30. Meehl GA, Washington WM, Arblaster JM, Hu AX (2004) Factors affecting climate sensitivity in global coupled models. J Clim 17(7):1584–1596CrossRefGoogle Scholar
  31. Menkes C, Boulanger JP, Busalacchi AJ, Vialard J, Delecluse P, McPhaden MJ, Hackert E, Grima N (1998) Impact of TAO vs. ERS wind stresses onto simulations of the tropical pacific ocean during the 1993–1998 period by OPA ogcm. Climatic impact of scale interactions for the tropical ocean–atmosphere system. Euroclivar Workshop Rep. 13, pp 46–48Google Scholar
  32. Nigam S, Chao Y (1996) Evolution dynamics of tropical ocean–atmosphere annual cycle variability. J Clim 9(12):3187–3205CrossRefGoogle Scholar
  33. Pyatt HE, Albrecht BA, Fairall C, Hare JE, Bond N, Minnis P, Ayers JK (2005) Evolution of marine atmospheric boundary layer structure across the cold tongue–ITCZ complex. J Clim 18(5):737–753CrossRefGoogle Scholar
  34. Reynolds RW (1988) A real time global sea-surface temperature analysis. J Clim 1:75–86CrossRefGoogle Scholar
  35. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287CrossRefGoogle Scholar
  36. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2005) Sensitivity of the atlantic thermohaline circulation to global freshwater forcing. Clim Dyn. doi:101007/s00382-006-0171-3
  37. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33(7):L07711CrossRefGoogle Scholar
  38. Terray L, Sevault E, Guilyardi E, Thual O (1995) The OASIS coupler user guide version 2.0. Cerfacs technical report TR/CMGC:95–46Google Scholar
  39. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800CrossRefGoogle Scholar
  40. Trenberth K, Salomon A (1994) The global heat balance: heat transports in the atmosphere and ocean. Clim Dyn 10:107–134CrossRefGoogle Scholar
  41. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  42. Wang B (1994) On the annual cycle in the tropical eastern central pacific. J Clim 7(12):1926–1942CrossRefGoogle Scholar
  43. Xie P, Arkin P (1996) Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9(4):840–858CrossRefGoogle Scholar
  44. Xie S, Saito K (2001) Formation and variability of a northerly ITCZ in a hybrid coupled AGCM: Continental forcing and oceanic–atmospheric feedback. J Clim 14(6):1262–1276CrossRefGoogle Scholar
  45. Yu JY, Mechoso CR (1999) Links between annual variations of peruvian stratocumulus clouds and of SST in the eastern equatorial pacific. J Clim 12(11):3305–3318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Braconnot
    • 1
  • F. Hourdin
    • 2
  • S. Bony
    • 2
  • J. L. Dufresne
    • 2
  • J. Y. Grandpeix
    • 2
  • O. Marti
    • 1
  1. 1.IPSL/LSCE, unité mixte CEA-CNRS-UVSQGif-sur-Yvette CedexFrance
  2. 2.IPSL/LMD, Unité mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99Paris cedex 05France

Personalised recommendations