Advertisement

Climate Dynamics

, Volume 29, Issue 4, pp 357–373 | Cite as

The effect of land surface changes on Eemian climate

  • Guy SchurgersEmail author
  • Uwe Mikolajewicz
  • Matthias Gröger
  • Ernst Maier-Reimer
  • Miren Vizcaíno
  • Arne Winguth
Article

Abstract

Transient experiments for the Eemian (128–113 ky BP) were performed with a complex, coupled earth system model, including atmosphere, ocean, terrestrial biosphere and marine biogeochemistry. In order to investigate the effect of land surface parameters (background albedo, vegetation and tree fraction and roughness length) on the simulated changes during the Eemian, simulations with interactive coupling between climate and vegetation were compared with additional experiments in which these feedbacks were suppressed. The experiments show that the influence of land surface on climate is mainly caused by changes in the albedo. For the northern hemisphere high latitudes, land surface albedo is changed partially due to the direct albedo effect of the conversion of grasses into forest, but the indirect effect of forests on snow albedo appears to be the major factor influencing the total absorption of solar radiation. The Western Sahara region experiences large changes in land surface albedo due to the appearance of vegetation between 128 and 120 ky BP. These local land surface albedo changes can be as much as 20%, thereby affecting the local as well as the global energy balance. On a global scale, latent heat loss over land increases more than 10% for 126 ky BP compared to present-day.

Keywords

Land Surface Surface Albedo Plant Functional Type Snow Albedo Albedo Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was performed in the CLIMCYC project, funded by the DEKLIM program of the German Ministry of Education and Research (BMBF). We would like to thank Martin Claussen and two anonymous reviewers for helpful comments.

References

  1. Berger AL (1978) Long-term variations of daily insolation and quaternary climate change. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  2. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718CrossRefGoogle Scholar
  3. Braconnot P, Joussaume S, Marti O, De Noblet N (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to Mid-Holocene insolation. Geophys Res Lett 26:2481–2484CrossRefGoogle Scholar
  4. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles 16:1139, doi: 10.1029/2001GB001662 CrossRefGoogle Scholar
  5. Calov R, Ganopolski A, Petoukhov V, Claussen M, Brovkin V, Kubatzki C (2005) Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Clim Dyn 24:563–576, doi: 10.1007/s00382-005-0008-5 CrossRefGoogle Scholar
  6. Charney JG (1975) Dynamics of deserts and droughts in the Sahel. Q J R Meteorol Soc 101:193–202CrossRefGoogle Scholar
  7. Charney J, Stone PH, Quirk WJ (1975) Drought in the Sahara: a biogeophysical feedback mechanism. Science 187:434–435CrossRefGoogle Scholar
  8. Charney JG, Stone PH, Quirk WJ (1976) Reply to Ripley EA, drought in the Sahara: insufficient biogeophysical feedback. Science 191:100–102CrossRefGoogle Scholar
  9. Claussen M (1991) Estimation of areally-averaged surface fluxes. Bound Lay Meteorol 54:387–410CrossRefGoogle Scholar
  10. Claussen M (1994) On coupling global biome models with climate models. Clim Res 4:203–221Google Scholar
  11. Claussen M (1997) Modelling bio-geophysical feedback in the African and Indian monsoon region. Clim Dyn 13:247–257CrossRefGoogle Scholar
  12. Claussen M (1998) On multiple solutions of the atmosphere–vegetation system on present-day climate. Global Change Biol 4:549–559CrossRefGoogle Scholar
  13. Claussen M, Gayler V (1997) The greening of the Sahara during the mid-Holocene: results of an interactive atmosphere-biome model. Global Ecol Biogeogr 6:369–377CrossRefGoogle Scholar
  14. Claussen M, Lohmann U, Roeckner E, Schulzweida U (1994) A global data set of land-surface parameters. Max Planck Institute for Meteorology, Rep 135, HamburgGoogle Scholar
  15. Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur HJ (1999) Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys Res Lett 24:2037–2040CrossRefGoogle Scholar
  16. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586CrossRefGoogle Scholar
  17. Coe MT, Bonan GB (1997) Feedbacks between climate and surface water in northern Africa during the middle Holocene. J Geophys Res 102:11087–11101CrossRefGoogle Scholar
  18. Crowley TJ, Baum SK (1997) Effect of vegetation on an ice age climate model simulation. J Geophys Res 102:16463–16480CrossRefGoogle Scholar
  19. Crucifix M, Loutre MF (2002) Transient simulations over the last interglacial period (126–115 kyr BP): feedback and forcing analysis. Clim Dyn 19:417–433CrossRefGoogle Scholar
  20. Crucifix M, Betts RA, Hewitt CD (2005) Preindustrial-potential and Last Glacial Maximum global vegetation simulated with a coupled climate-biosphere model: Diagnosis of bioclimatic relationships. Glob Planet Change 45:295–312CrossRefGoogle Scholar
  21. Diffenbaugh NS, Sloan LC (2002) Global climate sensitivity to land surface change: The Mid Holocene revisited. Geophys Res Lett 29:114. doi: 10.1029/2002GL014880 CrossRefGoogle Scholar
  22. DKRZ (1993) The ECHAM3 atmospheric general circulation model. Deutsches Klimarechenzentrum, Rep 6, HamburgGoogle Scholar
  23. Douville H, Royer JF (1997) Influence of the temperate and boreal forests on the Northern Hemisphere climate in the Météo-France climate model. Clim Dyn 13:57–74CrossRefGoogle Scholar
  24. Eltahir EAB (1996) Role of vegetation in sustaining large-scale atmospheric circulations in the tropics. J Geophys Res 101:4255–4268CrossRefGoogle Scholar
  25. Eltahir EAB, Gong C (1996) Dynamics of wet and dry years in West Africa. J Clim 9:1030–1042CrossRefGoogle Scholar
  26. Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54CrossRefGoogle Scholar
  27. Gallimore RG, Kutzbach JE (1996) Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381:503–505CrossRefGoogle Scholar
  28. Gallimore R, Jacob R, Kutzbach J (2005) Coupled atmosphere–ocean-vegetation simulations for modern and mid-Holocene climates: role of extratropical vegetation cover feedbacks. Clim Dyn 25:755–776. doi: 10.1007/s00382–005-0054-z CrossRefGoogle Scholar
  29. Greve R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland Ice Sheet: response to steady-state and transient climate scenarios. J Clim 10:901–918CrossRefGoogle Scholar
  30. Hagemann S, Botzet M, Dümenil L, Machenhauer B (1999) Derivation of global GCM boundary conditions from 1 km land use satellite data. Max Planck Institute for Meteorology, Rep 289, HamburgGoogle Scholar
  31. Kubatzki C, Montoya M, Rahmstorf S, Ganopolski A, Claussen M (2000) Comparison of the last interglacial climate simulated by a coupled global model of intermediate complexity and an AOGCM. Clim Dyn 16:799–814CrossRefGoogle Scholar
  32. Kukla G, Robinson D (1980) Annual cycle of surface albedo. Mon Weather Rev 108:56–68CrossRefGoogle Scholar
  33. Levis S, Foley JA, Pollard D (1999) CO2, climate, and vegetation feedbacks at the Last Glacial Maximum. J Geophys Res D24:31191–31198CrossRefGoogle Scholar
  34. Levis S, Foley JA, Pollard D (2000) Large-scale vegetation feedbacks on a doubled CO2 climate. J Clim 13:1313–1325CrossRefGoogle Scholar
  35. Lorenz SJ, Lohmann G (2004) Acceleration technique for Milankovitch type forcing in a coupled atmosphere–ocean circulation model: method and application for the Holocene. Clim Dyn 23:727–743. doi: 10.1007/s00382-0040469-y CrossRefGoogle Scholar
  36. Maier-Reimer E (1993) Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions. Global Biogeochem Cycles 7:645–677CrossRefGoogle Scholar
  37. Mikolajewicz U, Voss R (2000) The role of the individual air–sea flux components in CO2 induced changes of the ocean’s circulation and climate. Clim Dyn 16:627–642CrossRefGoogle Scholar
  38. Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M, Winguth AME (2007) Long-term consequences of anthropogenic CO2 emissions simulated with a complex earth system model. Clim Dyn. doi: 10.1007/s00382-006-0204-y (in press)
  39. Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances. Part I: the land dynamics (LAD) model. J Hydrometeorol 3:283–299CrossRefGoogle Scholar
  40. de Noblet NI, Prentice IC, Joussaume S, Texier D, Botta A, Haxeltine A (1996) Possible role of atmosphere-biosphere interactions in triggering the last glaciation. Geophys Res Lett 23:3191–3194CrossRefGoogle Scholar
  41. de Noblet-Ducoudré N, Claussen M, Prentice C (2000) Mid-Holocene greening of the Sahara: first results of the GAIM 6000 year BP experiment with two asynchronously coupled atmosphere/biome models. Clim Dyn 16:643–659CrossRefGoogle Scholar
  42. Otterman J, Chou MD, Arking A (1984) Effects of nontropical forest cover on climate. J Clim Appl Meteorol 23:762–767CrossRefGoogle Scholar
  43. Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. In: Developments in atmospheric science, vol 17. Elsevier, New York, p 425Google Scholar
  44. Prentice IC, Webb T III (1998) BIOME 6000: reconstructing global mid-Holocene vegetation patterns from palaeoecological records. J Biogeogr 25:997–1005CrossRefGoogle Scholar
  45. de Ridder K (1998) The impact of vegetation cover on Sahelian drought persistence. Bound Lay Meteorol 88:307–321CrossRefGoogle Scholar
  46. Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the model physics and resolution. Max Planck Institut für Meteorology, Hamburg, Report no 93Google Scholar
  47. Sausen R, Voss R (1996) Techniques for asynchronous and periodically synchronous coupling of atmosphere and ocean models. Part I: general strategy and application to the cyclo-stationary case. Clim Dyn 12:313–323CrossRefGoogle Scholar
  48. Schurgers G, Mikolajewicz U, Gröger M, Maier-Reimer E, Vizcaíno M, Winguth A (2006) Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene. Clim Past 2:205–220CrossRefGoogle Scholar
  49. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9:161–185CrossRefGoogle Scholar
  50. Tarasov L, Peltier WR (2003) Greenland glacial history, borehole constraints, and Eemian extent. J Geophys Res 108:2143. doi: 10.1029/2001JB001731 CrossRefGoogle Scholar
  51. TEMPO (Kutzbach JE, Bartlein PJ, Foley JA, Harrison SP, Hostetler SW, Liu Z, Prentice IC, Webb T III) (1996) Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 years BP. Global Biogeochem Cycles 10:427–436Google Scholar
  52. Texier D, De Noblet N, Harrison SP, Haxeltine A, Jolly D, Joussaume S, Laarif F, Prentice IC, Tarasov P (1997) Quantifying the role of biosphere–atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Clim Dyn 13:865–882CrossRefGoogle Scholar
  53. Thomas G, Rowntree P (1992) The boreal forests and climate. Q J R Meteorol Soc 118:469–497CrossRefGoogle Scholar
  54. Voss R, Mikolajewicz U (2001) The climate of 6000 years BP in near-equilibrium simulations with a coupled AOGCM. Geophys Res Lett 28:2213–2216CrossRefGoogle Scholar
  55. Wilson MF, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J Climatol 5:119–143CrossRefGoogle Scholar
  56. Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) CO2 uptake of the marine biosphere: feedbacks between the carbon cycle and climate change using a dynamic earth system model. Geophys Res Lett 32:L23714. doi: 10.1029/2005GL023681 CrossRefGoogle Scholar
  57. Yoshimori M, Reader MC, Weaver AJ, McFarlane NA (2002) On the causes of glacial inception at 116 kaBP. Clim Dyn 18:383–402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Guy Schurgers
    • 1
    • 2
    Email author
  • Uwe Mikolajewicz
    • 1
  • Matthias Gröger
    • 1
  • Ernst Maier-Reimer
    • 1
  • Miren Vizcaíno
    • 1
    • 3
  • Arne Winguth
    • 4
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.Department of Physical Geography and Ecosystems AnalysisLund UniversityLundSweden
  3. 3.Department of GeographyUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Atmospheric and Oceanic SciencesCenter for Climatic ResearchMadisonUSA

Personalised recommendations