Skip to main content
Log in

Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigate the large-scale forcing and teleconnections between atmospheric circulation (sea level pressure, SLP), sea surface temperatures (SSTs), precipitation and heat wave events over western Europe using a new dataset of 54 daily maximum temperature time series. Forty four of these time series have been homogenised at the daily timescale to ensure that the presence of inhomogeneities has been minimised. The daily data have been used to create a seasonal index of the number of heat waves. Using canonical correlation analysis (CCA), heat waves over western Europe are shown to be related to anomalous high pressure over Scandinavia and central western Europe. Other forcing factors such as Atlantic SSTs and European precipitation, the later as a proxy for soil moisture, a known factor in strengthening land–atmosphere feedback processes, are also important. The strength of the relationship between summer SLP anomalies and heat waves is improved (from 35%) to account for around 46% of its variability when summer Atlantic and Mediterranean SSTs and summer European precipitation anomalies are included as predictors. This indicates that these predictors are not completely collinear rather that they each have some contribution to accounting for summer heat wave variability. However, the simplicity and scale of the statistical analysis masks this complex interaction between variables. There is some useful predictive skill of summer heat waves using multiple lagged predictors. A CCA using preceding winter North Atlantic SSTs and preceding January to May Mediterranean total precipitation results in significant hindcast (1972–2003) Spearman rank correlation skill scores up to 0.55 with an average skill score over the domain equal to 0.28 ± 0.28. In agreement with previous studies focused on mean summer temperature, there appears to be some predictability of heat wave events on the decadal scale from the Atlantic Multidecadal Oscillation (AMO), although the long-term global mean temperature is also well related to western European heat waves. Combining these results with the observed positive trends in summer continental European SLP, North Atlantic SSTs and indications of a decline in European summer precipitation then possibly these long-term changes are also related to increased heat wave occurrence and it is important that the physical processes controlling these changes be more fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  • Alexander LV, et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109

    Article  Google Scholar 

  • Ansell TJ, et al (2006) Daily mean sea level pressure reconstructions for the European–North Atlantic region for the period 1850–2003. J Climate 19:2717–2742

    Article  Google Scholar 

  • Auer I, Böhm R, Schöner W (2001) Austrian long-term climate 1767–2000 multiple instrumental climate time series from central Europe. Techn. Ber., Zentralanstalt für Meteorologie und Geodynamik, Wien

  • Barnston AG, Livezey RL (1987) Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Mon Wea Rev 117:1083–1123

    Article  Google Scholar 

  • Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for 2005 the global land areas for the period 1951 to 2000. DWD, Klimastatusbericht KSB 2004, ISBN 3-88148-402-7:181–190

  • Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80

    Article  Google Scholar 

  • Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31:2202–2202

    Article  Google Scholar 

  • Bergström H, Moberg A (2002) Daily air temperature and pressure series for Uppsala (1722–1998). Clim Change 53:213–252

    Article  Google Scholar 

  • Bhend J (2005) North Atlantic and European cyclones: their variability and change from 1881 to 2003. Master Thesis, Institute of Geography, University of Bern, Switzerland

  • Black E, Blackburn M, Harison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59:217–223

    Article  Google Scholar 

  • Brabson BB, Lister DH, Jones PD, Palutikof JP (2005) Soil moisture and predicted spells of extreme temperatures in Britain. J Geophys Res 110:D05104. doi:10.1029/2004JD005156

    Google Scholar 

  • Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Google Scholar 

  • Brunet M, Saladié O, Jones PD, Sigró J, Aguilar E, Moberg A, Lister D, Walther A, López (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850-2003). Int J Climatol 26:1777–1802

    Article  Google Scholar 

  • Burt S (2004) The August 2003 heatwave in the United Kingdom: Part 1—Maximum temperatures and historical precedents. Weather 59:199–208

    Article  Google Scholar 

  • Butler CJ, Suarez AMG, Coughlin ADS, Morrell C (2005) Air temperatures at Armagh observatory, northern Ireland, from 1796 to 2002. Int J Climatol 25:1055–1079

    Article  Google Scholar 

  • Campbell EP (2005) Statistical modeling in nonlinear systems. J Climate 18:3388–3399

    Article  Google Scholar 

  • Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Climate 18:2805–2811

    Article  Google Scholar 

  • Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J Roy Stat Soc C-App 53:405–425

    Article  Google Scholar 

  • Chatfield C (1996) The analysis of time series, an introduction. Chapman and Hall. 5. Aufl

  • Cherry S (1996) Singular value decomposition analysis and canonical correlation analysis. J Climate 9:2003–2009

    Article  Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally-weighted fitting: an approach to fitting analysis by local fitting. J Am Stat Assoc 83:596–610

    Article  Google Scholar 

  • Collins D, Della-Marta P, Plummer N, Trewin B (2000) Trends in annual frequencies of extreme temperature events in Australia. Aust Met Mag 49:277–292

    Google Scholar 

  • Colman A (1997) Prediction of summer central England temperature from preceding North Atlantic winter sea surface temperature. Int J Climatol 17:1285–1300

    Article  Google Scholar 

  • Colman A, Davey M (1999) Prediction of summer temperature, rainfall and pressure in Europe from preceding winter North Atlantic ocean temperature. Int J Climatol 19:513–536

    Article  Google Scholar 

  • Della-Marta P, Collins D, Braganza K (2004) Updating Australia’s high quality annual temperature dataset. Aust Met Mag 53:75–93

    Google Scholar 

  • Della-Marta PM, Wanner H (2006) A method of homogenising the extremes and mean of daily temperature measurements. J Climate 19:4179–4197

    Article  Google Scholar 

  • Demarée G, Lachaert P, Verhoeve T, Thoen E (2002) The long-term daily Central Belgium Temperature (CBT) series (1767–1998) and early instrumental meteorological observations in Belgium. Clim Change 53:269–293

    Article  Google Scholar 

  • Domonkos P, Kysely J, Piotrowicz K, Petrovic P, Likso T (2003) Variability of extreme temperature events in South-Central Europe during the 20th century and its relationship with large-scale circulation. Int J Climatol 23:987–1010

    Article  Google Scholar 

  • Easterling D, Peterson T (1995) A new method for detecting undocumented discontinuities in climatological time series. Int J Climatol 15:369–377

    Article  Google Scholar 

  • Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37:36–48

    Article  Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Ferranti L, Viterbo P (2006) The European summer of 2003: sensitivity to soil water initial conditions. J Climate 19:3659–3680

    Article  Google Scholar 

  • Findell KL, Delworth TL (2005) A modeling study of dynamic and thermodynamic mechanisms for summer drying in response to global warming. Geophys Res Lett 32:L16702

    Article  Google Scholar 

  • Fink A, Brucher T, Kruger A, Leckebush G, Pinto J, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216

    Article  Google Scholar 

  • Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Klein Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Google Scholar 

  • Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31:L13504

    Article  Google Scholar 

  • Haylock M, Goodess C (2004) Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int J Climatol 24:759–776

    Article  Google Scholar 

  • Herzog J, Müller-Westermeier G (1998) Homogenitätsprüfung und Homogenisierung klimatologischer Messreihen im Deutschen Wetterdienst. Techn. Ber. 202, Deutscher Wetterdienst

  • Hess P, Brezowsky H (1977) Katalog der Großwetterlagen Europas 1881–1976. Techn. Ber. 3. Auflg., Ber. d. 113, Deutscher Wetterdienst, Offenbach

  • Hurrell JW, Folland CK (2002) A change in the summer atmospheric circulation over the North Atlantic. CLIVAR Exchanges 7:52–54

    Google Scholar 

  • Huth R, Kysely J, Pokorna L (2000) A GCM simulation of heat waves, dry spells, and their relationships to circulation. Clim Change 46:29–60

    Article  Google Scholar 

  • IPCC (2001) Climate Change 2001: the scientific basis contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

  • Klein Tank A (2002) Climate of Europe: assessment of observed daily temperature extremes and precipitation events. De Bilt, KNMI., Techn. Ber., KNMI, De Bilt, The Netherlands

  • Klein Tank A, et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Climate 16:3665–3680

    Article  Google Scholar 

  • Klein Tank AMG, Können GP, Selten FM (2005) Signals of anthropogenic influence on European warming as seen in the trend patterns of daily temperature variance. Int J Climatol 25:1–16

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Google Scholar 

  • Koppe C, Kovats R, Jendritzky G, Menne B (2004) Heat-waves: impacts and responses. Techn. Ber., Word Health Organisation Regional Office for Europe, Copenhagen, Sweden. In: Health and Global Environmental Change Series, no. 2

  • Kovats R, Hajat S, Wilkinson P (2004) Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, United Kingdom. Occupat Environ Med 61:893–898

    Article  Google Scholar 

  • Kovats R, Koppe C (2005) Integration of public health with adaptation to climate change: lessons learned and new directions. Kap. Heatwaves: past and future impacts. Lisse, Swets & Zeitlinger

  • Lamb H (1972) British Isles weather types and a register of daily sequence of circulation patterns, 1861-1971. Bd. 116 von HMSO. London

  • Lund R, Reeves J (2002) Detection of undocumented changepoints: a revision of the two-phase regression model. J Climate 15:2547–2554

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  • Meehl G, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  Google Scholar 

  • Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Climate Appl Meteor 26:1589–1600

    Article  Google Scholar 

  • Miles MK (1977) Atmospheric circulation during the severe drought of 1975/76. Meteorol Mag 106:154–164

    Google Scholar 

  • Milligan J (2004) Heatwaves: the developed world’s hidden disaster, Techn Ber, International Federation of Red Cross and Red Crescent, World Disasters Report

  • Mitchell T, Jones P (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Moberg A, Bergström H (1997) Homogenization of Swedish temperature data. Part III: The long temperature records from Stockholm and Uppsala. Int J Climatol 17:667–699

    Article  Google Scholar 

  • Moberg A, Bergstrom H, Krigsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Climatic Change 53:171–212

    Article  Google Scholar 

  • Moberg A, et al (2006) Indices for daily temperature and precipitation extremes in Europe analysed for the period 1901-2000. J Geophys Res 111:D22106. doi:10.1029/2006JD007103

    Google Scholar 

  • Nakamura M, Enomoto T, Yamane S (2005) A simulation study of the 2003 heatwave in Europe. J Earth Simul 2:55–69

    Google Scholar 

  • Nicholls N (1987) The use of canonical correlation to study teleconnections. Monthly Weather Rev 115:393–399

    Article  Google Scholar 

  • Ogi M, Yamazaki K, Tachibana Y (2005) The summer northern annular mode and abnormal summer weather in 2003. Geophys Res Lett 32:L04706. doi:10.1029/2004GL021528

  • Pal JS, Giorgi F, Bi XQ (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202. doi:10.1029/2004GL019836

    Google Scholar 

  • Parker D, Horton B (2005) Uncertainties in central England temperature 1878–2003 and some improvements to the maximum and minimum series. Int J Climatol 25:1173–1188

    Article  Google Scholar 

  • Parker DE, Legg TP, Folland CK (1992) A new daily central England temperature series, 1772–1991. Int J Climatol 12:317–342

    Article  Google Scholar 

  • Peterson T, et al (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517

    Article  Google Scholar 

  • Philipp A, Della-Marta PM, Jacobeit J, Fereday DR, Jones PD, Moberg A, Wanner, H (2007) Long term variability of daily North Atlantic–European pressure patterns since 1850 classified by simulated annealing clustering. J Climate (in press)

  • Poumadère M, Mays C, Le Mer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Anal 25:1483–1494

    Article  Google Scholar 

  • Preisendorfer R (1988) Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam

  • Press W, Teukolsky S, Vetterling W, Flannery B (1996) Numerical recipies in FORTRAN 77: the art of scientific programming. Cambridge University Press, Cambridge

    Google Scholar 

  • Qian BD, Saunders MA (2003) Summer UK temperature and its links to preceding Eurasian snow cover, North Atlantic SSTs, and the NAO. J Climate 16:4108–4120

    Article  Google Scholar 

  • Ratcliffe RAS (1976) The hot spell of late June–early July 1976. Weather 31:355–357

    Google Scholar 

  • Ratcliffe RAS (1977) A synoptic climatologists viewpoint of the 1975/76 drought. Meteorol Mag 106:145–154

    Google Scholar 

  • Rodwell M, Rowell D, Folland C (1999) Oceanic forcing of the wintertime North Atlantic oscillation and European climate. Nature 398:320–323

    Article  Google Scholar 

  • Schär C, Luthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: a process study with a regional climate model. J Climate 12:722–741

    Article  Google Scholar 

  • Schär C, Jendritzky G (2004) Climate change: hot news from summer 2003. Nature 432:559–560

    Article  Google Scholar 

  • Schär C, Vidale P, Luthi D, Frei C, Haberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  • Schmutz C, Gyalistras D, Luterbacher J, Wanner H (2001) Reconstruction of monthly 700, 500 and 300 hPa geopotential height fields in the European and Eastern North Atlantic region for the period 1901–1947. Clim Res 18:181–193

    Google Scholar 

  • Seneviratne S, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:203–206

    Article  Google Scholar 

  • Shabbar A, Skinner W (2004) Summer drought patterns in Canada and the relationship to global seas surface temperatures. J Climate 17:2866–2880

    Article  Google Scholar 

  • Shaw MS (1977) The exceptional heat-wave of 23 June to 8 July 1976. Meteorol Mag 106:329–346

    Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Climate 17:2466–2477

    Article  Google Scholar 

  • von Storch H, Zwiers W (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Stott P, Stone D, Allen M (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Trigo RM, Garcia-Herrera R, Diaz J, Trigo IF, Valente MA (2005) How exceptional was the early August 2003 heatwave in France? Geophys Res Lett 32:L10701. doi:10.1029/2005GL022410

  • Valleron AJ, Boumendil A (2004) Epidemiology and heat waves: analysis of the 2003 episode in France. C R Biol 327:1125–1141

    Article  Google Scholar 

  • Vautard R, Yiou P, D’Andrea F, de Noblet N, Viovy N, Cassou C, Polcher J, Ciais P, Kageyama M, Fan Y (2007) Winter Mediterranean trigger of summer heat and drought waves in Europe. Geophys Res Lett (in press)

  • Wang X (2003) Comments on “Detection of undocumented changepoints: a revision of the two-phase regression model”. J Climate 16:3383–3385

    Article  Google Scholar 

  • Wijngaard J, Klein Tank A, Können G (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692

    Article  Google Scholar 

  • Wilks D (1995) Statistical methods in the atmospheric sciences. Academic, New York

  • Xoplaki E, González-Rouco FJ, Gyalistras D, Luterbacher J, Rickli R, Wanner H (2003a) Interannual summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and Mediterranean SSTs 1950–1999. Clim Dyn 20:523–536

    Google Scholar 

  • Xoplaki E, Gonzalez-Rouco J, Luterbacher J, Wanner H (2003b) Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn 20:723–739

    Google Scholar 

  • Yarnal B (1993) Synoptic climatology in environmental analysis: a primer. Belhaven Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Della-Marta.

Appendix

Appendix

Table 3.

Table 3 A list of high quality daily maximum temperature time series used in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della-Marta, P.M., Luterbacher, J., von Weissenfluh, H. et al. Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29, 251–275 (2007). https://doi.org/10.1007/s00382-007-0233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0233-1

Keywords

Navigation