Climate Dynamics

, Volume 28, Issue 6, pp 599–633 | Cite as

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model

  • Uwe MikolajewiczEmail author
  • Matthias Gröger
  • Ernst Maier-Reimer
  • Guy Schurgers
  • Miren Vizcaíno
  • Arne M. E. Winguth


A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.


Earth System Model North Atlantic Deep Water Deep Water Formation Terrestrial Biosphere North Atlantic Deep Water Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed in the project CLIMCYC, funded by the DEKLIM program of the German Ministry of Education and Research. Arne Winguth is supported by NASA grant NAG5-11245 and the UW Graduate School Research Funds. The simulations have been performed at the “Deutsches Klimarechenzentrum”. Comments by Erich Roeckner, Matt Howard and two anonymous reviewers helped to improve the paper substantially. Norbert Noreiks helped to prepare the figures.


  1. Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456CrossRefGoogle Scholar
  2. Bacon S (1997) Circulation and fluxes in the North Atlantic between Greenland and Ireland. J Phys Oceanogr 27:1420–1435CrossRefGoogle Scholar
  3. Baumgartner A, Reichel E (1975) Die Weltwasserbilanz. Oldenbourg, MünchenGoogle Scholar
  4. Bryden H, Roemmich DH, Church JA, (1991) Ocean heat transport across 24°N in the Pacific. Deep Sea Res 38:297–324CrossRefGoogle Scholar
  5. Chevallier F, Bauer P, Kelly G, Jakob C, McNally T (2001) Model clouds over oceans as seen from space: comparison with HIRS/2 and MSU radiances. J Clim 14(21):4216–4229CrossRefGoogle Scholar
  6. Church JA et al (2001) Changes in sea level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 640–693Google Scholar
  7. Cox PM, Betts RA, Jones C, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187CrossRefGoogle Scholar
  8. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–373CrossRefGoogle Scholar
  9. Dixon KW, Delworth TL, Spelman MJ, Stouffer RJ (1999) The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM climate change experiment. Geophys Res Lett 26:2749–2752CrossRefGoogle Scholar
  10. Dufresne J-L, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29. DOI 10.1029/2001GL013777Google Scholar
  11. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085Google Scholar
  12. Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  13. Fichefet T, Poncin C, Goosse H, Huybrechts P, Janssens I, Le Treut H (2003) Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys Res Lett 30:1911. DOI 10.1029/2003GL017826Google Scholar
  14. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10(4):603–628CrossRefGoogle Scholar
  15. Friedlingstein P, Bopp L, Ciais P, Dufresne J-L, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28:1543–1546CrossRefGoogle Scholar
  16. Friedlingstein P, Dufresne J-L, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus 55B:692–700Google Scholar
  17. Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. http://www.pnas.org_cgi_doi_10.1073_pnas.0504949102
  18. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefGoogle Scholar
  19. Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J Clim 16:696–705CrossRefGoogle Scholar
  20. Gent PR, Willebrand J, McDougall T, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 19:2962–2970Google Scholar
  21. Gibson JK, Källberg P, Uppala S, Hernadez A, Nomura A, Serrano E (1997) ERA description ECMWF Re-Anal Proj Rep Ser 1, Reading UKGoogle Scholar
  22. Gouretski VV, Koltermann KP (2004) WOCE global hydrographic technical report, Berichte des BSH Nr. 35, Hamburg 50 p, 2 CD-ROMsGoogle Scholar
  23. Govindasamy B, Thompson S, Mirin A, Wickett M, Caldeira K (2005) Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model. Tellus 57B:153–163Google Scholar
  24. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Navrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32. DOI 10.129/2005GL023209Google Scholar
  25. Greve R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J Clim 10(5):901–918CrossRefGoogle Scholar
  26. Greve R (2000) On the response of the Greenland ice sheet to greenhouse climate change. Clim Change 46:289–303CrossRefGoogle Scholar
  27. Holfort J, Siedler G (2001) The meridional ocean transports of heat and nutrients in the South Atlantic. J Phys Oceanogr 31:5–29CrossRefGoogle Scholar
  28. Houghton RA, Hackler JL (2002) Carbon flux to the atmosphere from land-use changes. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn, USAGoogle Scholar
  29. Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  30. Huffman GJ, Adler RF, Arkin P et al (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78(1):5–20CrossRefGoogle Scholar
  31. Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12:2169–2188CrossRefGoogle Scholar
  32. Jickells TD, An ZS, Andersen KK et al (2005) Global iron connections between desert dust, ocean biogeochemistry and climate. Science 308(5718):67–71CrossRefGoogle Scholar
  33. Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its variations over the last 150 years. Rev Geophys 37:173–199CrossRefGoogle Scholar
  34. Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett (in press)Google Scholar
  35. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–470CrossRefGoogle Scholar
  36. Klein B, Molinari JB, Müller TJ, Siedler G, (1995) A transatlantic section ar 14.5°N: merdional volume and heat fluxes. J Mar Res 53:929–957CrossRefGoogle Scholar
  37. Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilisation of the thermohaline circulation in a greenhouse warming simulation. J Clim 13:1809–1813CrossRefGoogle Scholar
  38. Lavin A, Bryden L, Parilla G (1998) Meridional transport and heat flux variations in the subtropical North Atlantic. Global Atmos Ocean Syst 6:269–293Google Scholar
  39. Macdonald AM, Wunsch C (1996) An estimate of global ocean circulation and heat fluxes. Nature 382:436–439CrossRefGoogle Scholar
  40. Maier-Reimer E (1993) Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions. Global Biogeochem Cycles 7:645–677CrossRefGoogle Scholar
  41. Maier-Reimer E, Mikolajewicz U, Hasselmann K (1993) Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J Phys Oceanogr 23:731–757CrossRefGoogle Scholar
  42. Maier-Reimer E, Mikolajewicz U, Winguth A (1996) Interactions between ocean circulation and the biological pumps in the global warming. Clim Dyn 12:711–721CrossRefGoogle Scholar
  43. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean atmosphere model. J Clim 1:841–866CrossRefGoogle Scholar
  44. Manabe S, Stouffer RJ (1994) Multiple-century response of a coupled ocean–atmosphere model to an increase of the atmospheric carbon dioxide. J Clim 7:5–23CrossRefGoogle Scholar
  45. Manabe S, Stouffer RJ (1997) Coupled ocean-atmosphere model response to freshwater input: comparison to Younger Dryas event. Paleoceanogr 12:321–336CrossRefGoogle Scholar
  46. Marland G, Boden TA, Andres RJ (2005) Global, regional, and national fossil fuel CO2 emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USAGoogle Scholar
  47. Marotzke J, Pierce DW (1997) On spatial scales and lifetimes of SST anomalies beneath a diffusive atmosphere. J Phys Oceanogr 27:133–139CrossRefGoogle Scholar
  48. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max–Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5(2):91–127CrossRefGoogle Scholar
  49. Mikolajewicz U, Voss R (2000) The role of the individual air–sea flux components in CO2-induced changes of the ocean’s circulation and climate. Clim Dyn 16:627–642CrossRefGoogle Scholar
  50. Mikolajewicz U, Crowley TJ, Schiller A, Voss R (1997) Modeling North Atlantic/North Pacific teleconnections during the Younger Dryas. Nature 387:384–387, plus erratum 388:602Google Scholar
  51. Nakicenovic N, Alcamo J, Davis G, De Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, Van Rooijen S, Victor N, Dadi Z (2001) Special report on emissions scenarios. A special report of Working Group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  52. Orr JC, Maier-Reimer E, Mikolajewicz U, Monfray P, Sarmiento JL, Toggweiler JR, Taylor NK, Palmer J, Gruber N, Sabine CL, Le Quere C, Key RM, Boutin J (2001) Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem Cycles 15(1):43–60CrossRefGoogle Scholar
  53. Pacanowski RC, Philander G (1981) Parametrization of vertical mixing in numerical models of the tropical ocean. J Phys Oceanogr 11:1442–1451CrossRefGoogle Scholar
  54. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  55. Petoukhov V, Claussen M, Berger A, Crucifix M, Eby M, Eliseev AV, Fichefet T, Ganopolski A, Goosse H, Kamenkovich I, Mokhov II, Montoya M, Mysak LA, Sokolov L, Stone P, Wang Z, Weaver AJ (2005) EMIC Intercomparison Project (EMIP): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Clim Dyn 25:363–385CrossRefGoogle Scholar
  56. Rahmstorf S, Willebrand J (1995) The role of temperature feedback in stabilizing the thermohaline circulation. J Phys Oceanogr 25:787–805CrossRefGoogle Scholar
  57. Reeh N (1991) Parameterization of melt rate and surface temperature on the Greenland Ice Sheet. Polarforschung 59(3):113–128Google Scholar
  58. Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18:3409–3427CrossRefGoogle Scholar
  59. Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the present-day climate with the ECHAM model: impact of the model physics and resolution. Max–Planck-Institut für Meteorologie, Hamburg, Report No 93Google Scholar
  60. Saenko OA, Schmittner A, Weaver AJ (2004) The Atlantic–Pacific Seesaw. J Clim 17:2033–2038CrossRefGoogle Scholar
  61. Saunders PM, King BA (1995) Oceanic fluxes in the WOCE A11 section. J Phys Oceanogr 25:1942–1958CrossRefGoogle Scholar
  62. Schiller A, Mikolajewicz U, Voss R (1997) The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim Dyn 13:325– 347CrossRefGoogle Scholar
  63. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710. DOI 10.129/2005GL024368Google Scholar
  64. Schmitz WJ (1995) On the interbasin-scale thermohaline circulation. Rev Geophys 33:151–173CrossRefGoogle Scholar
  65. Schurgers G (2006) Long-term interactions between vegetation and climate—model simulations for past and future, vol 27. Berichte zur Erdsystemforschung, Hamburg, pp 143. Available at
  66. Smith EL (1936) Photosynthesis in relation to light and carbon dioxide. Proc Natl Acad Sci USA 22:504–511CrossRefGoogle Scholar
  67. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9:161–185CrossRefGoogle Scholar
  68. Speer KG, Holfort J, Reynard T, Siedler G (1996) South Atlantic heat transport at 11°S. In: Wefer G, berger WH, Siedler G, Webb DJ (eds) The South Atlantic: present and past circulation. Springer, Berlin Heidelberg New York, pp 105–120Google Scholar
  69. Stone PH, Miller DA (1980) Empirical relations between seasonal changes in meridional temperature gradients and meridional fluxes of heat. J Atmos Sci 37(8):1708–1721CrossRefGoogle Scholar
  70. Stouffer RJ, Manabe S, Bryan K (1989) Interhemispheric asymmetry in climate response to a gradual increase of atmospheric CO2. Nature 342:660–662CrossRefGoogle Scholar
  71. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387CrossRefGoogle Scholar
  72. Sweby PK (1984) High-resolution schemes using flux limiters for hyperbolic conservation-laws. Siam J Num Anal 21:995–1011CrossRefGoogle Scholar
  73. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33:L07711. DOI 10.1029/2006GL025765Google Scholar
  74. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning stream functions for the global ocean. J Clim 16(19):3213–3226CrossRefGoogle Scholar
  75. Visbeck M, Marshall J, Haine T, Spall M (1997) Specification of eddy transfer coefficients in coarse resolution ocean circulation models. J Phys Oceanogr 27:381–402CrossRefGoogle Scholar
  76. Vizcaíno M (2004) Adaptative changes in a 3-D ice sheet model for its use in palaeosimulations. Diplomarbeit Meteorologisches Institut der Universität Hamburg, unpublished manuscriptGoogle Scholar
  77. Vizcaíno M (2006) Long-term interactions between ice sheets and climate under anthropogenic greenhouse forcing. Simulations with two complex earth system models, vol 30. Berichte zur Erdsystemforschung 30, Hamburg, pp 183. Available at
  78. Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean–river atmospheric CO2 changes. In: Sunquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations archean to present. Geophys Monogr Ser vol. 32, AGU, Washington, pp 99–110Google Scholar
  79. Voss R, Mikolajewicz U (2001a) Long-term climate changes due to increased CO2 concentration in the coupled atmosphere–ocean general circulation model ECHAM3/LSG. Clim Dyn 17:35–60CrossRefGoogle Scholar
  80. Voss R, Mikolajewicz U (2001b) The climate of 6000 years BP in near-equilibrium simulations with a coupled AOGCM. Geophys Res Lett 28(11):2213–2216CrossRefGoogle Scholar
  81. Voss R, Sausen R (1996) Techniques for asynchronous and periodically synchronous coupling of atmosphere and ocean models. Part II: impact of variability. Clim Dyn 12:605–614Google Scholar
  82. Voss R, Sausen R, Cubasch U (1998) Periodically synchronously coupled integrations with the atmosphere-ocean general circulation model ECHAM3/LSG. Clim Dyn 14:249–266CrossRefGoogle Scholar
  83. Warner RC, Budd WF (1998) Modelling the long-term response of the Antarctic ice sheet to global warming. Ann Glaciol 27:161Google Scholar
  84. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land use change and forestry. Special report, Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  85. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang HX, Yoshimori M (2001) The UVic earth system climate model: model description, climatology, and applications to past and future climates. Atmos Ocean 39(4):361–428Google Scholar
  86. Wijffels S (2001) Ocean transport of fresh water. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic Press, pp 475–488Google Scholar
  87. Winguth AME, Maier-Reimer E, Mikolajewicz U, Segschneider J (1994) El Niño-Southern oscillation related fluctuations of the marine carbon cycle. Global Biogeochem Cycles 8:39–63CrossRefGoogle Scholar
  88. Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic earth system model. Geophys Res Lett 32(23):L23714. DOI 10.1029/2005GL023681Google Scholar
  89. Wright DG, Stocker TF (1993) Younger Dryas experiments. In: Peltier WR (ed) Ice in the climate system. Springer, Berlin Heidelberg New York, pp 395–416Google Scholar
  90. Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558CrossRefGoogle Scholar
  91. Zwally H, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Uwe Mikolajewicz
    • 1
    Email author
  • Matthias Gröger
    • 1
  • Ernst Maier-Reimer
    • 1
  • Guy Schurgers
    • 1
    • 2
  • Miren Vizcaíno
    • 1
    • 3
  • Arne M. E. Winguth
    • 4
  1. 1.Max-Planck-Institut für MeteorologieHamburgGermany
  2. 2.Department of Physical Geography and Ecosystem AnalysisLund UniversityLundSweden
  3. 3.Department of Geography and Center for Atmospheric SciencesUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Atmospheric and Oceanic SciencesCenter for Climatic ResearchMadisonUSA

Personalised recommendations