Climate Dynamics

, Volume 28, Issue 5, pp 503–516 | Cite as

Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model

  • Matthieu Lengaigne
  • Christophe Menkes
  • Olivier Aumont
  • Thomas Gorgues
  • Laurent Bopp
  • Jean-Michel André
  • Gurvan Madec


The influence of chlorophyll spatial patterns and variability on the tropical Pacific climate is investigated by using a fully coupled general circulation model (HadOPA) coupled to a state-of-the-art biogeochemical model (PISCES). The simulated chlorophyll concentrations can feedback onto the ocean by modifying the vertical distribution of radiant heating. This fully interactive biological-ocean-atmosphere experiment is compared to a reference experiment that uses a constant chlorophyll concentration (0.06 mg m−3). It is shown that introducing an interactive biology acts to warm the surface eastern equatorial Pacific by about 0.5°C. Two competing processes are involved in generating this warming: (a) a direct 1-D biological warming process in the top layers (0–30 m) resulting from strong chlorophyll concentrations in the upwelling region and enhanced by positive dynamical feedbacks (weaker trade winds, surface currents and upwelling) and (b) a 2-D meridional cooling process which brings cold off-equatorial anomalies from the subsurface into the equatorial mixed layer through the meridional cells. Sensitivity experiments show that the climatological horizontal structure of the chlorophyll field in the upper layers is crucial to maintain the eastern Pacific warming. Concerning the variability, introducing an interactive biology slightly reduces the strength of the seasonal cycle, with stronger SST warming and chlorophyll concentrations during the upwelling season. In addition, ENSO amplitude is slightly increased. Similar experiments performed with another coupled general circulation model (IPSL-CM4) exhibit the same behaviour as in HadOPA, hence showing the robustness of the results.


Couple General Circulation Model South Equatorial Current Equatorial Upwelling ENSO Amplitude Equatorial Under Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge comments of E. Maier-Raimer and an anonymous reviewer that led to significant improvements in an earlier version of the manuscript. They further acknowledge IRD for support, the developers team of the HadOPA and IPSL-CM4 models and the IDRIS centre where computations were carried out. ML also likes to thank J. Slingo, A. Timmermann and F.-F. Jin for invaluable discussion on this work. ML was founded by the Marie Curie Intra-European fellowship MEIF-CT-2003-501143.


  1. AchutaRao K, Sperber KR, in collaboration with the CMIP modelling groups (2002) Simulation of the El Niño southern oscillation: results from the coupled model intercomparison project. Climate Dyn 19:191–209Google Scholar
  2. Aumont O, Bopp L (2006) Globalizing ocean in-situ iron fertilization experiments. Global Biogeochem Cycles 20:GB2017. DOI 10.1029/2005GB002591Google Scholar
  3. Aumont O, Maier-Reimer E, Blain S, Monfray P (2003) An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochem Cycles 17:1060. DOI 10.1029/2001GB001745Google Scholar
  4. Barber RT, Sanderson MP, Lindley ST, Chai F, Newton J, Trees CC, Foley DG, Chavez FP (1996) Primary productivity and its regulation in the equatorial Pacific during and following the 1991–1992 El Niño. Deep Sea Res 43B:933–969Google Scholar
  5. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172Google Scholar
  6. Blanke B. Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  7. Bony S, Emmanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection, evaluation using TOGA COARE data. J Atmos Sci 58:3158–3183CrossRefGoogle Scholar
  8. Chavez FP, Strutton PG, Friedrich GE, Feely RA, Feldman GC, Foley DG, McPhaden MJ (1999) Biological and chemical response of the equatorial Pacific ocean to the 1997–98 El Niño. Science 286:2126–2131CrossRefGoogle Scholar
  9. Emanuel KA, (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  10. Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean–atmosphere interactions: bridging measurements and theory for El Niño. J Clim 14:3086–3101CrossRefGoogle Scholar
  11. Fichefet T, Morales Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268CrossRefGoogle Scholar
  12. Grandpeix JY, Phillips V, Tailleux R (2004) Improved mixing representation in Emanuel’s convection scheme. Q J R Meteorol Soc 604:3207–3222CrossRefGoogle Scholar
  13. Gregory D, Rowntree PR (1990) A mass flux convection scheme with the representation of cloud ensemble characteristics and stability dependent closure. Mon Wea Rev 118:1483–1506CrossRefGoogle Scholar
  14. Gregory D, Kershaw R, Inness PM (1997) Parametrisation of momentum transport by convection. II: Tests in single column and general circulation models. Q J Roy Meteor Soc 123:1153–1183Google Scholar
  15. Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn 26:329–348. DOI 10.1007/s00382-005-0084-6Google Scholar
  16. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2005) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn DOI 10.1007/s00382-006-0158-0Google Scholar
  17. Jerlov NG (1968) Optical oceanography. Elsevier, LondonGoogle Scholar
  18. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19. DOI 10.1029/2003GB002199Google Scholar
  19. Lengaigne M, Madec G, Menkes C, Alory G (2003) The Impact of Isopycnal mixing on the tropical ocean circulation. J Geophys Res 108. DOI 10.1029/2002JC001704Google Scholar
  20. Lengaigne M, Guilyardi E, Boulanger JP, Menkes C, Delecluse P, Inness P, Cole J, Slingo J (2004) Triggering of El Niño by Westerly wind events in a coupled general circulation model. Climate Dyn 23:601–620. DOI 10.1007/s00382-004-0457-2Google Scholar
  21. Lengaigne M, Boulanger JP, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Nino events in a coupled general circulation model. J Clim 19:1850–1868. DOI 10.1175/JCLI3706.1Google Scholar
  22. Lewis MR, Carr ME, Feldman GC, Esias W, McClain C (1990) Influence of penetrating solar radiation on the heat budget of the Equatorial Pacific. Nature 347:543–546CrossRefGoogle Scholar
  23. Liu Z (2002) A simple model study of the forced response of ENSO to an external periodic forcing. J Clim 15:1088–1098CrossRefGoogle Scholar
  24. Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10:23–41CrossRefGoogle Scholar
  25. Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 Ocean General Circulation Model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace, No. 11, 91ppGoogle Scholar
  26. Manizza M, Le Quere C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys Res Lett 32. DOI 10.1029/2004GL020778Google Scholar
  27. Marzeion B, Timmermann A, Murtuggude R, Jin FF (2005) Biophysical feedbacks in the Tropical Pacific. J Clim 18:58–70CrossRefGoogle Scholar
  28. McClain CR, Cleave ML, Feldman GC, Gregg WW, Hooker SB, Kuring N (1998) Science quality SeaWiFS data for global biosphere research. Sea Technol 39:10–16Google Scholar
  29. Murtugudde RJ Beauchamp, Busalacchi A (2002) Effects of penetrative radiation in the upper ocean tropical ocean circulation. J Clim 15:470–486CrossRefGoogle Scholar
  30. Moore JK, Doney SC, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cycles 18:GB4028. DOI 10.1029/2004GB002220Google Scholar
  31. Morel A (1988) Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J Geophys Res 93:10749–10768CrossRefGoogle Scholar
  32. Morel A, Maritorena S (2001) Bio-optical properties of oceanic waters: a reappraisal. J Geophys Res 106:7163–7180CrossRefGoogle Scholar
  33. Nakamoto S, Prasanna Kumar S, Oberhuber J, Ishizaka J., Muneyama K, Frouin R (2001) Response of the equatorial Pacific to chlorophyll pigment in a mixed-layer isopycnal ocean general circulation model. Geophys Res Lett 28:2021–2024CrossRefGoogle Scholar
  34. Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956CrossRefGoogle Scholar
  35. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrisations in the Hadley Centre climate model-HadAM3. Climate Dyn 16:123–146CrossRefGoogle Scholar
  36. Roullet G, Madec G (2000) Salt conservation, free surface and varying volume: a new formulation for Ocean GCMs. J Geophys Res 105:23927–23942CrossRefGoogle Scholar
  37. Sathyendranath S, Platt T, Horne EPW, Harrison WG, Ulloa O, Outerbridge R, Hoepffner N (1991) Estimation of new production in the ocean by compound remote sensing. Nature 353:129–133CrossRefGoogle Scholar
  38. Spencer H, Slingo JM (2003) The simulation of peak and delayed ENSO teleconnections. J Clim 16:1757–1774CrossRefGoogle Scholar
  39. Stoens A, Menkes C, Radenac MH, Dandonneau Y, Grima N, Eldin G, Memery L, Navarette C, Andre JM, Moutin T, Raimbault P (1999) The coupled physical-new production system in the equatorial Pacific during the 1992–1995 El NIno. J Geophys Res 104:3323–3329CrossRefGoogle Scholar
  40. Strutton PG, Chavez FP (2004) Radiant heating in the equatorial Pacific: observed variability and potential for real-time calculation. J Clim 17:1097–1109CrossRefGoogle Scholar
  41. Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land surface modification. J Geophys Res100:18707–18726CrossRefGoogle Scholar
  42. Timmermann A, Jin FF (2002) Phytoplankton influences on tropical climate. Geophys Res Lett 29. DOI 10.1029/2002GL015434Google Scholar
  43. Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675CrossRefGoogle Scholar
  44. Valcke S, Terray L, Piacentini A (2000) The OASIS coupler user guide version 2.4, Technical report TR/CMGC/00-10, available at Cerfacs, Toulouse, FranceGoogle Scholar
  45. Valcke S, Caubel A, Vogelsang R, Declat D (2004) OASIS3 ocean atmosphere sea ice soil user’s guide technical report TR/CMGC/04/68, CERFACS, Toulouse, FranceGoogle Scholar
  46. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus J, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Clim 19:3973–3987CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Matthieu Lengaigne
    • 1
    • 2
  • Christophe Menkes
    • 2
  • Olivier Aumont
    • 2
  • Thomas Gorgues
    • 2
  • Laurent Bopp
    • 3
  • Jean-Michel André
    • 2
  • Gurvan Madec
    • 2
  1. 1.Centre for Global Atmospheric ModelingUniversity of ReadingReadingUK
  2. 2.Laboratoire d’Oceanographie et de Climatologie: Experimentations et Analyses Numériques (LOCEAN)Paris Cedex 05France
  3. 3.Laboratoire des Sciences du Climat et de l’EnvironnementSaclayFrance

Personalised recommendations