Climate Dynamics

, Volume 28, Issue 2–3, pp 215–230 | Cite as

Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries

  • G. KrinnerEmail author
  • O. Magand
  • I. Simmonds
  • C. Genthon
  • J. -L. Dufresne


The aim of this work is to assess potential future Antarctic surface mass balance changes, the underlying mechanisms, and the impact of these changes on global sea level. To this end, this paper presents simulations of the Antarctic climate for the end of the twentieth and twenty-first centuries. The simulations were carried out with a stretched-grid atmospheric general circulation model, allowing for high horizontal resolution (60 km) over Antarctica. It is found that the simulated present-day surface mass balance is skilful on continental scales. Errors on regional scales are moderate when observed sea surface conditions are used; more significant regional biases appear when sea surface conditions from a coupled model run are prescribed. The simulated Antarctic surface mass balance increases by 32 mm water equivalent per year in the next century, corresponding to a sea level decrease of 1.2 mm year−1 by the end of the twenty-first century. This surface mass balance increase is largely due to precipitation changes, while changes in snow melt and turbulent latent surface fluxes are weak. The temperature increase leads to an increased moisture transport towards the interior of the continent because of the higher moisture holding capacity of warmer air, but changes in atmospheric dynamics, in particular off the Antarctic coast, regionally modulate this signal.


Antarctic Peninsula Southern Annular Mode Surface Mass Balance Strong Precipitation Event East Antarctic Plateau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financed by the French programs ACI C3 et MC2 and the European integrated project ENSEMBLES. The simulations were carried out on the Mirage computer platform in Grenoble. Additional computer resources at IDRIS are acknowledged. In Wilkes and Victoria Land sectors, most of observed SMB data were obtained from recent research carried out in the framework of the Project on Glaciology of the PNRA-MIUR and financially supported by PNRA consortium through collaboration with ENEA Roma, and supported by the French Polar Institute (IPEV). This last work is a French–Italian contribution to the ITASE Project. The authors thank two anonymous referees for useful comments.


  1. Alexeev VA, Langen PL, Bates JR (2005) Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim Dyn 24:655–666CrossRefGoogle Scholar
  2. de Angelis H, Skvarca P (2003) Glacier surge after ice shelf collapse. Science 299:1560–1562CrossRefGoogle Scholar
  3. Bamber JL, Gomez-Dans JL (2006) The accuracy of digital elevation models of the Antarctic continent. Earth Planetary Sci Lett 237:516–523CrossRefGoogle Scholar
  4. Bromwich D (1988) Snowfall in high southern latitudes. Rev Geophys 26:149–168Google Scholar
  5. Cai W, Whetton PH, Karoly DJ (2003) The response of the Antarctic oscillation to increasing and stabilized atmospheric CO2. J Clim 16:1525–1538Google Scholar
  6. Connolley WM (1997) Variability in annual mean circulation in southern high latitudes. Clim Dyn 13:745–756CrossRefGoogle Scholar
  7. Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544CrossRefGoogle Scholar
  8. Cuffey K, Clow GD, Alley RB, Stuiver M, Waddington E, Saltus R (1997) Large Arctic temperature change at the Wisconsin-Holocene deglacial transition. Science 270:455–458CrossRefGoogle Scholar
  9. Davis CH, Li Y, McConnell JR, Frey MM, Hanna E (2005) Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science 308:1877–1878CrossRefGoogle Scholar
  10. Domack E, Duran D, Leenter A, Ishman S, Doane S, McCallum S, Amblas D, Ring J, Gilbert R, Prentice M (2005) Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436:681–685CrossRefGoogle Scholar
  11. Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520CrossRefGoogle Scholar
  12. Dufresne JL, Quaas J, Boucher O, Denvil S, Fairhead L (2005) Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century. Geophys Res Lett 32:L21703. DOI 10.1029/2005GL023619Google Scholar
  13. Ekaykin AA, Lipenkov VY, Kuzmina IN, Petit JR, Masson-Delmotte V Johnsen SJ (2004) The changes in isotope composition and accumulation of snow at Vostok station over the past 200 years. Ann Glaciol 39:569–575Google Scholar
  14. EPICA Project Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628Google Scholar
  15. Fogt RL, Bromwich DH (2006) Decadal variability of the ENSO teleconnection to the high latitude South Pacific governed by coupling with the Southern Annular Mode. J Clim 19:979–997CrossRefGoogle Scholar
  16. Forster PM, Taylor KE (2006) Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. J Clim (in press)Google Scholar
  17. Frezzotti M, Gandolfi S, La Marca F, Urbini S (2002) Snow dunes and glazed surfaces in Antarctica: new field and remote-sensing data. Ann Glaciol 34:81–88Google Scholar
  18. Frezzotti M, Pourchet M, Flora O,Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M (2004) New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn 23:803–813CrossRefGoogle Scholar
  19. Frezzotti M, Pourchet M, Flora O,Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M (2005) Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J Glaciol 172:113–124Google Scholar
  20. Fyfe JC, Boer GJ, Flato GM (1999) The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys Res Lett 26:1601–1604CrossRefGoogle Scholar
  21. Gallée H, Guyomarc’h G, Brun E (2001) Impact of snow drift on the Antarctic Ice Sheet Surface Mass Balance: possible sensitivity to snow-surface properties. Boundary Layer Meteorol 99:1–19CrossRefGoogle Scholar
  22. Genthon C, Kaspari S, Mayewski PA (2005) Interannual variability of the surface mass balance of West Antarctica from ITASE cores and ERA40 reanalyses, 1958–2000. Clim Dyn 24:759–770CrossRefGoogle Scholar
  23. Genthon C, Krinner G (2001) Antarctic surface mass balance and systematic biases in general circulation models. J Geophys Res 106:20653–20664CrossRefGoogle Scholar
  24. Genthon C, Cosme E (2003) Intermittent signature of ENSO in West-Antarctic precipitation. Geophys Res Lett 30: 2081. DOI 10.1029/2003GL018280Google Scholar
  25. Giovinetto MB, Bentley CR (1985) Surface balance in ice drainage systems of Antarctica. Antarct J US 20:6–13Google Scholar
  26. Giovinetto MB, Bromwich DH, Wendler G (1992) Atmospheric net transport of water vapor and latent heat across 70°S. J Geophys Res 97:917–930Google Scholar
  27. Gillet NP, Thompson DWJ (2003) Simulation of recent southern hemisphere climate change. Science 302:273–275CrossRefGoogle Scholar
  28. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462CrossRefGoogle Scholar
  29. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232CrossRefGoogle Scholar
  30. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Le Van P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn (in press)Google Scholar
  31. Huybrechts P, Gregory J, Janssens I, Wild M (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Glob Planet Change 42:83–105CrossRefGoogle Scholar
  32. ISMASS Committee (2004) Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data. Glob Planet Change 42:1–15CrossRefGoogle Scholar
  33. Kaspari S, Mayewski PA, Dixon DA, Spikes VB, Sneed SB, Handley MJ, Hamilton GS (2004) Climate variability in West Antarctica derived from annual accumulation-rate records from ITASE firn/ice cores. Ann Glaciol 39:585–594Google Scholar
  34. Krinner G, Genthon C (1997) The Antarctic surface mass balance in a stretched grid general circulation model. Ann Glaciol 25:73–78Google Scholar
  35. Krinner G, Genthon C (1998) GCM simulations of the last glacial maximum surface climate of Greenland and Antarctica. Clim Dyn 14:741–758CrossRefGoogle Scholar
  36. Krinner G, Genthon C (1999) Altitude dependence of the ice sheet surface climate. Geophys Res Lett 26:2227–2230CrossRefGoogle Scholar
  37. Krinner G, Werner M (2003) Impact of precipitation seasonality changes on isotopic signals in polar ice cores: a multi-model analysis. Earth Planet Sci Lett 216:525–538CrossRefGoogle Scholar
  38. Krinner G, Genthon C, Jouzel J (1997a) GCM analysis of local influences on ice core δ signals. Geophys Res Lett 24:2825–2828CrossRefGoogle Scholar
  39. Krinner G, Genthon C, Li ZX, Le Van P (1997b) Studies of the Antarctic climate with a stretched grid GCM. J Geophys Res 102:13731–13745CrossRefGoogle Scholar
  40. Krinner G, Mangerud J, Jakobsson M, Crucifix M, Ritz C, Svendsen JI (2004) Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature 427:429–432CrossRefGoogle Scholar
  41. Kushner PJ, Held IM, Delworth TL (2001) Southern hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249CrossRefGoogle Scholar
  42. Kwok R, Comiso JC (2002) Spatial patterns of variability in Antarctic surface temperature—connections to the southern hemisphere Annular Mode and the Southern Oscillation. Geophys Res Lett 29: 50. DOI 10.1029/2002GL015415Google Scholar
  43. Lachlan-Cope T, Connolley W, Turner J (2001a) The role of non-axisymmetric Antarctic orography in forcing the observed pattern of variability of the Antarctic climate. Geophy Res Lett 28:4111–4114CrossRefGoogle Scholar
  44. Lachlan-Cope T, Ladkin R, Turner J, Davison P (2001b) Observations of cloud and precipitation particles on the Avery Plateau, Antarctic Peninsula. Antarct Sci 13:339–348CrossRefGoogle Scholar
  45. van Lipzig NPM, van Meijgaard E, Oerlemans J (2002) Temperature sensitivity of the Antarctic Surface Mass Balance in a regional atmospheric climate model. J Clim 15:2758–2774CrossRefGoogle Scholar
  46. Listen GE, Winther J-G (2005) Antarctic surface and subsurface snow and ice melt fluxes. J Clim 18:1469–1481CrossRefGoogle Scholar
  47. Magand M, Frezzotti M, Pourchet M, Stenni B, Genoni L, Fily M (2004). Climate variability along latitudinal and longitudinal transects in East Antarctica. Ann Glaciol 39:351–358Google Scholar
  48. Marshall GJ, Scott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the southern hemisphere. Geophys Res Lett 31: L14205. DOI 10.1029/2004GL019952Google Scholar
  49. Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti MA, Foujols MA, Fichefet T, Friedlingstein P, Grandpeix JY, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, de Noblet-Ducoudré N, Polcher J, Talandier C (2005). The new IPSL climate system model: IPSL-CM4. Note du Pôle de Modélisation n. 26, IPSL, ISSN 1288–1619.
  50. Massom RA, Pook MJ, Comiso JC, Adams N, Turner J, Lachlan-Cope T, Gibson TT (2004) Precipitation over the interior East Antarctic Ice Sheet related to midlatitude blocking-high activity. J Clim 17:1914–1928CrossRefGoogle Scholar
  51. Masson-Delmotte V, Kageyama M, Braconnot P, Charbit S, Krinner G, Ritz C, Guilyardi E, Jouzel J, Abe-Ouchi A, Crucifix M, Gladstone RM, Hewitt CD, Kitoh A, Legrande A, Marti O, Merkel U, Motoi T, Ohgaito R, Otto-Bliesner B, Peltier WR, Ross I, Valdez PJ, Vettoretti G, Weber SL, Wolk F (2006) Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim Dyn 26:513–529CrossRefGoogle Scholar
  52. Mätzler C (1987) Applications of the interaction of microwaves with the natural snow cover. Remote Sens Rev 2:259–387Google Scholar
  53. Miller L, Douglas BC (2004) Mass and volume contributions to twentieth-century global sea level rise. Nature 428:406–409CrossRefGoogle Scholar
  54. Minikin A, Wagenbach D, Graf W, Kipfstuhl S (1994) Spatial and temporal variations of the snow chemistry at the central Filchner Ronne Ice Shelf, Antarctica. Ann Glaciol 20:440–447Google Scholar
  55. Monaghan AJ, Bromwich DH, Wang S-H (2006) Recent trends in Antarctic snow accumulation from Polar MM5. Philos Trans R Soc Lond A 364:1683–1708CrossRefGoogle Scholar
  56. Mosley-Thompson E, Paskievitch JF, Gow AJ, Thompson LG (1998) Late 20th century increase in South Pole snow accumulation. J Geophys Res 104:3877–3886CrossRefGoogle Scholar
  57. Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502CrossRefGoogle Scholar
  58. Murray R, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data. Part I development and operation of the scheme. Aust Meteorol Mag 39:167–180Google Scholar
  59. Noone D, Simmonds I (1998) Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation. Ann Glaciol 27:398–402Google Scholar
  60. Noone D, Turner J, Mulvaney R (1999) Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. J Geophys Res 104:19191–19211CrossRefGoogle Scholar
  61. Ohmura A, Wild M, Bengtsson L (1996) A possible change in mass balance of Greenland and Antarctic ice sheets in the coming century. J Clim 9:2124–2135CrossRefGoogle Scholar
  62. Parrenin F, Rémy F, Ritz C, Siegert MJ, Jouzel J (2004) New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core. J Geophys Res 109:D20102. DOI 10.1029/2004JD004561Google Scholar
  63. Pfeffer WT, Meier MF, Illangasekare HT (1991) Retention of Greenland runoff by refreezing: implications for projected future sea level change. J Geophys Res 96:22117–22124Google Scholar
  64. Phillpot HR, Zillman JW (1970) The surface temperature inversion over the Antarctic continent. J Geophys Res 75:4161–4169Google Scholar
  65. Pourchet M, Magand O, Frezzotti M, Ekaykin A, Winther JG (2003). Radionuclides deposition over Antarctica. J Environ Radioactivity 68:137–158CrossRefGoogle Scholar
  66. Reijmer CH, van den Broeke MR, Schelle MP (2002) Air parcel trajectories and snowfall related to five deep drilling locations in Antarctica based on the ERA-15 dataset. J Clim 15:1957–1968CrossRefGoogle Scholar
  67. Robin G (1977) Ice cores and climatic changes. Philos Trans R Soc Lond B 280:143–168Google Scholar
  68. Russell A, McGregor GR, Marshall GJ (2004) An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula. Tellus 56A:501–513Google Scholar
  69. Shindell DT, Schmidt GA (2004) Southern hemisphere climate response to ozone changes and greenhouse gas increases. Geophys Res Lett 31:L18209CrossRefGoogle Scholar
  70. Simmonds I (1985) Analysis of the “Spinup” of a general circulation model. J Geophys Res 90:5637–5660CrossRefGoogle Scholar
  71. Simmonds I (2003) Modes of atmospheric variability over the Southern Ocean. J Geophys Res 108: 8078. DOI 10.1029/2000JC000542Google Scholar
  72. Simmonds I, Keay K (2000) Mean southern hemisphere extratropical cyclone behaviour in the 40-year NCEP-NCAR analysis. J Clim 13:873–885CrossRefGoogle Scholar
  73. Simmonds I, Murray RJ (1999) Southern extratropical cyclone behaviour in ECMWF analyses during the FROST Special Observing Periods. Weather Forecast 14:878–891CrossRefGoogle Scholar
  74. Simmonds I, Wu X (1993) Cyclone behaviour response to changes in winter southern hemisphere sea-ice concentration. Q J R Meteorol Soc 119:1121–1148CrossRefGoogle Scholar
  75. Smith BT, Van Ommen TD, Morgan VI (2002) Distribution of oxygen isotope ratios and snow accumulation rates in Wilhelm II Land, East Antarctica. Ann Glaciol 35:107–110Google Scholar
  76. Stone DA, Weaver AJ, Stouffer RJ (2001) Projection of climate change onto modes of atmospheric variability. J Clim 14:3551–3565CrossRefGoogle Scholar
  77. Taylor KC, White JWC, Severinghaus JP, Brook EJ, Mayewski PA, Alley RB, Steig EJ, Spencer MK, Meyerson E, Meese DA, Lamorey GW, Grachev A, Gow AJ, Barnett BA (2004) Abrupt climate change around 22 ka on the Siple Coast of Antarctica. Q Sci Rev 23:7–15CrossRefGoogle Scholar
  78. Thomas R, Rignot E, Casassa G, Kanagaratnam P, Acuña C, Akins T, Brecher H, Frederick E, Gogineni P, Krabill W, Manizade S, Ramamoorthy H, Rivera A, Russell R, Sonntag J, Swift R, Yungel J, Zwally J (2004) Accelerated sea-level rise from West Antarctica. Science 306:255–258CrossRefGoogle Scholar
  79. Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296:895–899CrossRefGoogle Scholar
  80. Thompson SL, Pollard D (1997) Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS Version-2 Global Climate Model. J Clim 10:871–900CrossRefGoogle Scholar
  81. Torinesi O, Fily M, Genthon C (2003) Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors. J Clim 16:1047–1060CrossRefGoogle Scholar
  82. Turner J, Lachlan-Cope TA, Thomas JP, Colwell S (1995) The synoptic origins of precipitation over the Antarctic Peninsula. Antarct Sci 7:327–337Google Scholar
  83. Turner J, Harangozo SA, Marshall GJ, King JC, Colwell SR (2002) Anomalous atmospheric circulation over the Weddell Sea, Antarctica during the austral summer of 2001/2 resulting in extreme sea ice conditions. Geophys Res Lett 29:2160. DOI 10.1029/2002GL015565Google Scholar
  84. Turner J, Lachlan-Cope TA, Colwell S, Marshall GJ, Connolley WM (2006) Significant warming of the Antarctic winter troposphere. Science 311:1914–1917CrossRefGoogle Scholar
  85. van de Berg WJ, van den Broeke MR, Reijmer CH (2006) Reassessment of the Antarctic surface mass balance using calibrated input of a regional atmospheric climate model. J Geophys Res 111:D11104. DOI: 10.1029/2005JD006495Google Scholar
  86. van den Broeke MR (1997) Spatial and temporal variation of sublimation on Antarctica: results of a high-resolution general circulation model. J Geophys Res 102:29765–29777CrossRefGoogle Scholar
  87. van den Broeke MR (2005) Strong surface melting preceded collapse of Antarctic peninsula ice shelf. Geophys Res Lett 32:L12815CrossRefGoogle Scholar
  88. van den Broeke MR, van der Berg WJ, van Meijgaard E (2006) Snowfall in coastal West Antarctica much greater than previously assumed. Geophys Res Lett 33:L02505CrossRefGoogle Scholar
  89. Vaughan DG, Bamber JL, Giovinetto M, Russell J, Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. J Clim 12:933–946CrossRefGoogle Scholar
  90. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hogson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274CrossRefGoogle Scholar
  91. Watanabe O, Jouzel J, Johnsen S, Parrenin P, Shoji H, Yoshida N (2003) Homogeneous climate variability across East Antarctica over the past three cycles. Nature 422:509–512CrossRefGoogle Scholar
  92. Watkins AB, Simmonds I (1995) Sensitivity of numerical prognoses to Antarctic sea ice distribution. J Geophys Res 100:22681–22696CrossRefGoogle Scholar
  93. Wild M, Calanca P, Scherrer S, Ohmura A (2003) Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. J Geophys Res 108:4165CrossRefGoogle Scholar
  94. Yamazaki K (1994) Moisture budget in the Antarctic atmosphere. In: Jones HG, Davies TD, Ohmura A, Morris EM (eds) Snow and ice covers: interactions with the atmosphere and ecosystems. IAHS Publication No. 233, IAHS Press, pp 61–67Google Scholar
  95. Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland Ice-Sheet flow. Science 297:218–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • G. Krinner
    • 1
    Email author
  • O. Magand
    • 1
  • I. Simmonds
    • 2
  • C. Genthon
    • 1
  • J. -L. Dufresne
    • 3
  1. 1.LGGECNRS/UJF GrenobleSt Martin d’Hères CedexFrance
  2. 2.School of Earth SciencesUniversity of MelbourneParkvilleAustralia
  3. 3.LMD/IPSLCNRS/Université Paris 6Paris Cedex 05France

Personalised recommendations