Climate Dynamics

, Volume 27, Issue 7–8, pp 831–849 | Cite as

Evaluation of different freshwater forcing scenarios for the 8.2 ka BP event in a coupled climate model

  • A. P. WiersmaEmail author
  • H. Renssen
  • H. Goosse
  • T. Fichefet


To improve our understanding of the mechanism causing the 8.2 ka BP event, we investigated the response of ocean circulation in the ECBilt-CLIO-VECODE (Version 3) model to various freshwater fluxes into the Labrador Sea. Starting from an early Holocene climate state we released freshwater pulses varying in volume and duration based on published estimates. In addition we tested the effect of a baseline flow (0.172 Sv) in the Labrador Sea to account for the background-melting of the Laurentide ice-sheet on the early Holocene climate and on the response of the overturning circulation. Our results imply that the amount of freshwater released is the decisive factor in the response of the ocean, while the release duration only plays a minor role, at least when considering the short release durations (1, 2 and 5 years) of the applied freshwater pulses. Furthermore, the experiments with a baseline flow produce a more realistic early Holocene climate state without Labrador Sea Water formation. Meltwater pulses introduced into this climate state produce a prolonged weakening of the overturning circulation compared to an early Holocene climate without baseline flow, and therefore less freshwater is needed to produce an event of similar duration.


Ensemble Member Meridional Heat Transport Baseline Flow Convection Site Freshwater Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability—a prominent, widespread event 8200 yr ago. Geology 25:483–486CrossRefGoogle Scholar
  2. Alley RB, Agustsdottir AM (2005) The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Sci Rev 24:1123–1149CrossRefGoogle Scholar
  3. Barber DC, Dyke A, Hillaire-Marcel C, Jennings AE, Andrews JT, Kerwin MW, Bilodeau G, McNeely R, Southon J, Morehead MD, Gagnon J-M (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of laurentide lakes. Nature 400:344–348CrossRefGoogle Scholar
  4. Bauer E, Ganopolski A, Montoya M (2004) Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz. Paleoceanography 19:PA3014. DOI 10.1029/2004PA001030Google Scholar
  5. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quaternary Sci Rev 10:297–317CrossRefGoogle Scholar
  6. Berger A (1992) Orbital variations and insolation database. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series # 92-007. NOAA/NGDC Paleoclimatology Program, Boulder, CO, USAGoogle Scholar
  7. Bond GC, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on north atlantic climate during the holocene. Science 294:2130–2133CrossRefGoogle Scholar
  8. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles 16(4):1139. DOI 10.1029/2001GB001662Google Scholar
  9. Campin J-M, Goosse H (1999) Parameterization of density-driven downsloping flow for a coarse-resolution oceaan model in z-coordinate. Tellus 51A:412–430Google Scholar
  10. Clarke GKC, Leverington DW, Teller JT, Dyke AS (2004) Paleohydraulics of the last outburst flood from glacial lake agassiz and the 8200 BP cold event. Quaternary Sci Rev 23:389–407CrossRefGoogle Scholar
  11. Clarke GKC, Leverington DW, Teller JT, Dyke AS, Marshall SJ (2005) Fresh arguments against the shaw megaflood hypothesis. A reply to comments by David Sharpe on paleohydraulics of the last outburst flood from glacial lake agassiz and the 8200 BP cold event. Quaternary Sci Rev 24:1533–1541CrossRefGoogle Scholar
  12. Cottet-Puinel M, Weaver AJ, Hillaire-Marcel C, de Vernal A, Clark PU, Eby M (2004) Variation of labrador sea deep water formation over the last glacial cycle in a climate model of intermediate complexity. Quaternary Sci Rev 23:449–465CrossRefGoogle Scholar
  13. Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. in climate change 2001. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) The scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 525–582Google Scholar
  14. Deleersnijder E, Campin J-M (1995) On the computation of the barotropic mode of a free-surface world ocean model. Ann Geophys 13:675–688Google Scholar
  15. Dyke AS, Prest VK (1989) Paléogéographie de l’amérique du nord septentrionale, entre 18 000 and 5000 ans avant le présent. Commission géologique du Canada carte, échelle, 1703A, 1/12500000Google Scholar
  16. Dyke AS (2003) An outline of north american deglaciation with emphasis on central and northern Canada. In: Ehlers J (ed) Extent and chronology of quaternary glaciation. Elsevier, Amsterdam, pp 371–406Google Scholar
  17. Elliot M, Labeyrie L, Duplessy J-C (2002) Changes in North Atlantic deep-water formation associated with the dansgaard-oeschger temperature oscillations (60-10 ka). Quaternary Sci Rev 21:1153–1165CrossRefGoogle Scholar
  18. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:609–646CrossRefGoogle Scholar
  19. Gent JR, McWilliams JC (1990) Isopycnal mixing in ocean general circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  20. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355CrossRefGoogle Scholar
  21. Goosse H, Deleersnijder E, Fichefet T, England MH (1999) Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J Geophys Res 104(C6):13681–13695CrossRefGoogle Scholar
  22. Goosse H, Renssen H (2001) On the delayed response of sea ice in the Southern Ocean to an increase in greenhouse gas concentrations. Geophys Res Lett 28:3469–3473CrossRefGoogle Scholar
  23. Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2001) Decadal variability in high northern latitudes as simulated by an intermediate-complexity climate model. Ann Glaciol 33:525–532Google Scholar
  24. Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2002) A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Clim Dynam 19:61–83. DOI 10.1007/s00382-00001-00209-00385Google Scholar
  25. Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2003) Large sea-ice volume anomalies simulated in a coupled climate model. Clim Dynam 20:523–536. DOI 510.1007/s00382-00002-00290-00384Google Scholar
  26. Goosse H, Renssen H, Timmermann A, Bradley RS (2005) Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Quaternary Sci Rev 24(12–13):1345–1360CrossRefGoogle Scholar
  27. von Grafenstein U, Erlenkeuser H, Müller J, Jouzel J, Johnsen S (1998) The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim Dynam 14:73–81CrossRefGoogle Scholar
  28. Hillaire-Marcel C, de Vernal A, Bilodeau G, Weaver AJ (2001) Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature 410:1073–1077CrossRefGoogle Scholar
  29. Josenhans HW, Zevenhuizen J (1990) Dynamics of the laurentide ice sheet in Hudson Bay, Canada. Mar Geol 92:1–26CrossRefGoogle Scholar
  30. Keigwin LD, Lehman SJ (1994) Deep circulation change linked to heinrich event 1 and younger dryas in a middepth North Atlantic core. Paleoceanography 9(2):185–194CrossRefGoogle Scholar
  31. Klitgaard-Kristensen D, Sejrup HP, Haflidason H, Johnsen S, Spurk M (1998) A regional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the laurentide ice-sheet deglaciation? J Quaternary Sci 13:165–169CrossRefGoogle Scholar
  32. Knutti R, Flückinger J, Stocker TF, Timmermann A (2004) Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430:851–856CrossRefGoogle Scholar
  33. Korhola A, Weckström J, Holmström L, Erästö P (2000) A quantitative holocene climatic record from diatoms in northern fennoscandia. Quaternary Res 54:284–294CrossRefGoogle Scholar
  34. Korhola A, Vasko K, Toivonen HTT, Olander H (2002) Holocene temperature changes in northern fennoscandia reconstructed from chironomids using Bayesian modelling. Quaternary Sci Rev 21:1841–1860CrossRefGoogle Scholar
  35. Leuenberger MC, Lang C, Schwander J (1999) Delta15N measurements as a calibration tool for the paleothermometer and gas-ice age differences: a case study for the 8200 BP event in GRIP ice. J Geophys Res 104(18):22163–22170CrossRefGoogle Scholar
  36. Leverington D, Mann JD, Teller JT (2002) Changes in bathymetry and volume of glacial lake agassiz between 9200 and 7700 14C yr BP. Quaternary Res 57:244–252. DOI 210-1006/qres-2001-2311Google Scholar
  37. Licciardi JM, Teller JT, Clark PU (1999) Freshwater routing of the laurentide ice sheet during the last deglaciation. In: Clark PU, Webb RS, Keigwin LD (eds) Mechanisms of Global climate change at millennial time scales. American Geophysical Union, Washington, DC. Geophys Monogr 112:177–201Google Scholar
  38. Manabe S, Stouffer RJ (1995) Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378:165–167CrossRefGoogle Scholar
  39. Manabe S, Stouffer RJ (1997) Coupled ocean-atmosphere model response to freshwater input: comparison to younger dryas event. Paleoceanography 12:321–336CrossRefGoogle Scholar
  40. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875Google Scholar
  41. Moros M, Emeis K, Risebrobakken B, Snowball I, Kuijpers A, McManus J, Jansen E (2004) Sea surface temperatures and ice rafting in the Holocene North Atlantic: climate influences on northern Europe and Greenland. Quaternary Sci Rev 23:2113–2126CrossRefGoogle Scholar
  42. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367Google Scholar
  43. Peltier WR (1994) Ice age paleotopography. Science 265:195–201CrossRefGoogle Scholar
  44. Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen M-L, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102. DOI 10.1029/2005JD006079Google Scholar
  45. Raynaud D, Barnola J-M, Chappellaz J, Blunier T, Indermühle A, Stauffer B (2000) The ice record of Greenhouse gases: a view in the context of future changes. Quaternary Sci Rev 19:9–17CrossRefGoogle Scholar
  46. Renssen H, Goosse H, Fichefet T, Campin J-M (2001) The 8.2 kyr BP event simulated by a global atmosphere–sea-ice–ocean model. Geophys Res Lett 28:1567–1570CrossRefGoogle Scholar
  47. Renssen H, Goosse H, Fichefet T (2002) Modeling the effect of freshwater pulses on the early Holocene climate: the influence of high frequency climate variability. Paleoceanography 17:1020. DOI 1010.1029/2001PA000649Google Scholar
  48. Renssen H, Goosse H, Fichefet T (2005a) Contrasting trends in North Atlantic deep-water formation in the labrador sea and nordic seas during the holocene. Geophys Res Lett 32:L08711. DOI 08710.01029/02005GL022462Google Scholar
  49. Renssen H, Goosse H, Fichefet T, Brovkin V, Driesschaert E, Wolk F (2005b) Simulating the holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Clim Dynam 24(1):23–43CrossRefGoogle Scholar
  50. Rohling EJ, Pälike H (2005) Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434:975–979CrossRefGoogle Scholar
  51. Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International satellite cloud climatology project (ISCCP) documentation of new cloud datasets. World Meteorological Organisation, Geneva, WMO/TD-No 737Google Scholar
  52. Schaeffer M, Selten FM, Opsteegh JD, Goosse H (2002) Intrinsic limits to predictability of abrupt regional climate change in IPCC SRES scenarios. Geophys Res Lett 29(16):1767. DOI 10.1029/2002GL015254Google Scholar
  53. Schlessinger M (2005) Proposal for PMIP2/1ACE Paleo-hosing Model Intercomparison Project (PhMIP). WUN-ACE Kick-Off Meeting 15th–18th May 2005 (Abstracts)Google Scholar
  54. Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the holocene in the fennoscandian tree-line area: pollen-based climate reconstructions. Holocene 11:527–539CrossRefGoogle Scholar
  55. Sharpe D (2005) Comments on: paleohydraulics of the last outburst flood from glacial lake agassiz and the 8200 BP cold event by Clarke et al [Quaternary Sci Rev 23(2004):389–407]. Quaternary Sci Rev 24:1529–1532CrossRefGoogle Scholar
  56. Solignac S, de Vernal A, Hillaire-Marcel C (2004) Holocene sea-surface conditions in the North Atlantic—contrasted trends and regimes in the western and eastern sectors (Labrador Sea vs. Iceland Basin). Quaternary Sci Rev 23:319–334CrossRefGoogle Scholar
  57. Stocker TF, Wright DG (1991) Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351:729–732CrossRefGoogle Scholar
  58. Teller JT, Leverington DW, Mann JD (2002) Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Sci Rev 21:879–887CrossRefGoogle Scholar
  59. Törnqvist TE, Bick SJ, González JL, van der Borg K, de Jong AFM (2004) Tracking the sea-level signature of the 8.2 ka cooling event: new constraints from the mississippi delta. Geophys Res Lett 31:L23309. DOI 23310.21029/22004GL021429Google Scholar
  60. Upham W (1896) The glacial lake agassiz. Monographs of the United States geological survey, vol. 25. Washington Government Printing Office, WashingtonGoogle Scholar
  61. Veillette JJ (1994) Evolution and paleohydrology of glacial lakes Barlow and Ojibway. Quaternary Sci Rev 13:945–971CrossRefGoogle Scholar
  62. Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267CrossRefGoogle Scholar
  63. de Vernal (1997) Researchers look for links among paleoclimate events. Eos 78:247–249Google Scholar
  64. Weaver AJ, Hillaire-Marcel C (2004) Global warming and the next ice age. Science 304:400–402CrossRefGoogle Scholar
  65. Wiersma AP, Renssen H (2006) Model-data comparison for the 8.2 ka BP event: confirmation of a forcing mechanism by catastrophic drainage of laurentide lakes. Quaternary Sci Rev 25:63–88CrossRefGoogle Scholar
  66. Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572–575CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. P. Wiersma
    • 1
    Email author
  • H. Renssen
    • 1
  • H. Goosse
    • 2
  • T. Fichefet
    • 2
  1. 1.Faculty of Earth and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Institut d’Astronomie et de Géophysique George LemaîtreUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations