Climate Dynamics

, Volume 27, Issue 7–8, pp 727–741 | Cite as

Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation

  • N. ButchartEmail author
  • A. A. Scaife
  • M. Bourqui
  • J. de Grandpré
  • S. H. E. Hare
  • J. Kettleborough
  • U. Langematz
  • E. Manzini
  • F. Sassi
  • K. Shibata
  • D. Shindell
  • M. Sigmond


The effect of climate change on the Brewer–Dobson circulation and, in particular, the large-scale seasonal-mean transport between the troposphere and stratosphere is compared in a number of middle atmosphere general circulation models. All the models reproduce the observed upwelling across the tropical tropopause balanced by downwelling in the extra tropics, though the seasonal cycle in upwelling in some models is more semi-annual than annual. All the models also consistently predict an increase in the mass exchange rate in response to growing greenhouse gas concentrations, irrespective of whether or not the model includes interactive ozone chemistry. The mean trend is 11 kt s−1 year−1 or about 2% per decade but varies considerably between models. In all but one of the models the increase in mass exchange occurs throughout the year though, generally, the trend is larger during the boreal winter. On average, more than 60% of the mean mass fluxes can be explained by the EP-flux divergence using the downward control principle. Trends in the annual mean mass fluxes derived from the EP-flux divergence also explain about 60% of the trend in the troposphere-to-stratosphere mass exchange rate when averaged over all the models. Apart from two models the interannual variability in the downward control derived and actual mass fluxes were generally well correlated, for the annual mean.


Mass Flux Planetary Wave Tropical Tropopause Community Climate Model Version Rayleigh Friction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Kunihiko Kodera and Steven Pawson for agreeing to include this study in the GRIPS as a level 4 task. Discussions with Steven Hardiman, Peter Haynes, and Ted Shepherd were very much appreciated. The IGCM simulations were performed with support by the NERC Upper Troposphere/Lower Stratosphere Thematic Programme (GST022385 and NER/T/S/2002/00058). The UM64L and UM64Lchem simulations were funded by the EU as part of the EuroSPICE project.


  1. Andrews DG, McIntyre ME (1976) Planetary waves in horizontal vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J Atmos Sci 33:2031–2048CrossRefGoogle Scholar
  2. Andrews DG, McIntyre ME (1978) Generalized Eliassen–Palm and Charney-Drazin Theorems for waves on axisymmetric mean flows in compressible atmospheres. J Atmos Sci 35:175–185CrossRefGoogle Scholar
  3. Austin J, Butchart N (2003) Coupled chemistry-climate model simulations for the period 1980 to 2020: Ozone depletion and the start of ozone recovery. Q J R Meteorol Soc 129:3225–3249CrossRefGoogle Scholar
  4. Austin J, Shindell D, Beagley SR, Brühl C, Dameris M, Manzini E, Nagashima T, Newman P, Pawson S, Pitari G, Rozanov E, Schnadt C, Shepherd TG (2003) Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos Chem Phys 3:1–27CrossRefGoogle Scholar
  5. Boer GJ, Flato G, Ramsden D (2000) A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the twenty-first century. Clim Dyn 16:427–450CrossRefGoogle Scholar
  6. Brewer AW (1949) Evidence for a world circulation provided by measurements of helium and water vapour distribution in the stratosphere. Q J R Meteorol Soc 75:351–363Google Scholar
  7. Butchart N, Scaife AA (2001) Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature 410:799–802CrossRefGoogle Scholar
  8. Butchart N, Austin J, Knight JR, Scaife AA, Gallani ML (2000) The response of the stratospheric climate to projected changes in the concentrations of well-mixed greenhouse gases from 1992 to 2051. J Clim 13:2142–2159CrossRefGoogle Scholar
  9. Dobson GMB (1956) Origin and distribution of the polyatomic molecules in the atmosphere. Proc R Soc Lond 236A:187–193Google Scholar
  10. Forster PM, Blackburn M, Glover R, Shine KP, (2000) An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Clim Dyn 16:833–849CrossRefGoogle Scholar
  11. Gillett NP, Allen MR, Williams KD (2002) The role of stratospheric resolution in simulating the Arctic Oscillation response to greenhouse gases. Geophys Res Lett 29. DOI 10.1029/2001/GL014444Google Scholar
  12. Gillett NP, Allen MR, Williams KD (2003) Modelling the atmospheric response to doubled CO2 and depleted stratospheric ozone using a stratosphere-resolving coupled GCM. Q J R Meteorol Soc 129:947–966CrossRefGoogle Scholar
  13. de Grandpré J, Beagley SR, Fomichev VI, Griffioen E, McConnell JC, Medvedev AS, Shepherd TG (2000) Ozone climatology using interactive chemistry: results from the Canadian Middle Atmosphere Model. J Geophys Res 105(D21):26475–26491CrossRefGoogle Scholar
  14. Hare SHE, Gray LJ, Lahoz WA, O’Neill A (2005) On the design of practicable numerical experiments to investigate stratospheric temperature change. Atmos Sci Lett 6:123–127CrossRefGoogle Scholar
  15. Haynes PH, Marks CJ, McIntyre ME, Shepherd TG, Shine KP (1991) On the “downward control” of the extratropical diabatic circulations by eddy-induced mean zonal forces. J Atmos Sci 48:651–678CrossRefGoogle Scholar
  16. Holton JR (1990) On the global exchange of mass between the stratosphere and troposphere. J Atmos Sci 48:392–395CrossRefGoogle Scholar
  17. Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439CrossRefGoogle Scholar
  18. Hu Y, Tung KK (2003) Possible ozone-induced long-term changes in planetary wave activity in late winter. J Clim 16:3027–3038CrossRefGoogle Scholar
  19. IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York, NY, USA, 881 ppGoogle Scholar
  20. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model, CCM3. J Clim 11:1131–1149CrossRefGoogle Scholar
  21. Langematz U (2000) An estimate of the impact of observed ozone losses on stratospheric temperature. Geophys Res Lett 27:2077–2080CrossRefGoogle Scholar
  22. Langematz U, Kunze M, Krüger K, Labitzke K, Roff GL (2003) Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J Geophys Res 108(D1):4027. DOI 10.1029/2002JD002069Google Scholar
  23. Li D, Shine KP (1995) A 4-dimensional ozone climatology for UGAMP models. UGAMP (U.K. Universities Global Atmospheric Modelling Programme) Internal Report No. 35, Meteorology Department, Reading UniversityGoogle Scholar
  24. Manzini E, McFarlane NA (1998) The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. J Geophys Res 103:31523–31539CrossRefGoogle Scholar
  25. Manzini E, McFarlane NA, McLandress C (1997) Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MAECHAM4 general circulation model. J Geophys Res 102:25751–25762CrossRefGoogle Scholar
  26. Manzini E, Steil B, Brühl C, Giorgetta MA, Krüger K (2003) A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J Geophys Res 108(D14):4429. DOI 10.1029/2002JD002977Google Scholar
  27. McFarlane NA (1987) The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J Atmos Sci 44:1775–1800CrossRefGoogle Scholar
  28. Medvedev AS, Klaassen GP (1995) Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J Geophys Res 100:25841–25853CrossRefGoogle Scholar
  29. Morcrette J-J (1991) Radiation and cloud radiative properties in the ECMWF forecasting system. J Geophys Res 96:9121–9132CrossRefGoogle Scholar
  30. Nevison CD, Kinnison DE, Weiss RF (2004) Stratospheric influence on the tropospheric seasonal cycles of nitrous oxide and chloroflurocarbons. Geophys Res Lett 31:L20103. DOI 10.1029/2004GL020398Google Scholar
  31. Pawson S, Langematz U, Radek G, Schlese U, Strauch P (1998) The Berlin troposphere–stratosphere–mesosphere GCM: sensitivity to physical parametrizations. Q J R Meteorol Soc 124:1343–1371CrossRefGoogle Scholar
  32. Pawson S, Kodera K, Hamilton K, Shepherd TG, Beagley SR, Boville BA, Farrara JD, Fairlie TDA, Kitoh A, Lahoz WA, Langematz U, Manzini E, Rind DH, Scaife AA, Shibata K, Simon P, Swinbank R, Takacs L, Wilson RJ, Al-Saadi JA, Amodei M, Chiba M, Coy L, de Grandpré J, Eckman RS, Fiorino M, Grose WL, Koide H, Koshyk JN, Li D, Lerner J, Mahlman JD, McFarlane NA, Mechoso CR, Molod A, O’Neill A, Pierce RB, Randel WJ, Rood RB, Wu F (2000) The GCM-reality intercomparison project for SPARC (GRIPS): scientific issues and initial results. Bull Am Meteorol Soc 81:781–796CrossRefGoogle Scholar
  33. Pitari G, Mancini E, Rizi V, Shindell D (2002) Impact of future climate and emission changes on stratospheric aerosols and ozone. J Atmos Sci 59:414–440CrossRefGoogle Scholar
  34. Plumb RA, Eluszkiewicz J (1999) The Brewer–Dobson circulation: dynamics of the tropical upwelling. J Atmos Sci 56:868–890CrossRefGoogle Scholar
  35. Rind D, Lerner J, McLinden C (2001) Changes of tracer distributions in the doubled CO2 climate. J Geophys Res 106(D22):28061–28080CrossRefGoogle Scholar
  36. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present day climate, MPI Rep 218:90 pp. Hamburg, GermanyGoogle Scholar
  37. Rosenlof KH (1995) Seasonal cycle of the residual mean meridional circulation in the stratosphere. J Geophys Res 100:5173–5191CrossRefGoogle Scholar
  38. Sassi F, Garcia RR, Boville BA, Liu H (2002) On temperature inversions and the mesospheric surf zone. J Geophys Res 107. DOI 10.1029/2001JD001525Google Scholar
  39. Sassi F, Kinnison D, Boville BA, Garcia RR, Roble R (2004) Effect of El Nino-Southern Oscillation on the dynamical, thermal and chemical structure of the middle atmosphere. J Geophys Res 109. DOI 10.1029/2003JD004434Google Scholar
  40. Scaife AA, Butchart N, Warner CD, Swinbank R (2002) Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office unified model. J Atmos Sci 59:1473–1489CrossRefGoogle Scholar
  41. Shea DJ, Trenberth KE, Reynolds RW (1990) A global monthly sea surface temperature climatology. NCAR Technical Note NCAR/TN345+STR, pp 167Google Scholar
  42. Shibata K, Yoshimura H, Ohizumi M, Hosaka M, Sugi M (1999) A simulation of troposphere, stratosphere and mesosphere with an MRI/JMA98 GCM. Pap Meteorol Geophys 50:15–53CrossRefGoogle Scholar
  43. Shindell DT, Grewe V (2002) Separating the influence of halogen and climate changes on ozone recovery in the upper stratosphere. J Geophys Res 107(D12): 4144. DOI 10.1029/2001JD000420Google Scholar
  44. Shindell DT, Schmidt GA, Miller RL, Rind D (2001) Northern hemisphere winter climate response to greenhouse gas, volcanic, ozone and solar forcing. J Geophys Res 106:7193–7210CrossRefGoogle Scholar
  45. Sigmond M, Siegmund PC, Manzini E, Kelder H (2004) A simulation of the separate climate effects of middle atmospheric and tropospheric CO2 doubling. J Clim 17(12):2352–2367CrossRefGoogle Scholar
  46. Steil B, Brühl C, Manzini E, Crutzen PJ, Lelieveld J, Rasch PJ, Roeckner E, Krüger K (2003) A new interactive chemistry-climate model: 1. Present-day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data. J Geophys Res 108(D9):4290. DOI 10.1029/2002JD002971Google Scholar
  47. Swinbank R, O’Neill A (1994) A stratosphere-troposphere data assimilation system. Mon Weather Rev 122:686–702CrossRefGoogle Scholar
  48. Taylor CP, Bourqui MS (2005) A new fast stratospheric ozone chemistry scheme in an intermediate general-circulation model. I: description and evaluation. Q J R Meteorol Soc 131:2225–2242CrossRefGoogle Scholar
  49. Thompson DWJ, Solomon S (2005) Recent stratospheric climate trends as evidenced in radiosonde data: global structure and tropospheric linkages. J Clim 18:4785–4795CrossRefGoogle Scholar
  50. Warner CD, McIntyre ME (1999) Toward an ultra-simple spectral gravity wave parameterization for general circulation models. Earth Planet Space 51(7–8):475–484Google Scholar
  51. Williamson DL (1997) Climate simulation with a spectral, semi-Lagrangian model with linear grids. In: Lin C, Laprise R, Ritchie H (eds) Numerical methods in atmospheric and ocean modelling: the Andre J Robert memorial volume. Can Meteorol and Oceangr Soc, Ottawa, pp 279–292Google Scholar
  52. WMO (1999) Scientific assessment of ozone depletion 1998. Global ozone research and monitoring Project Rep 47Google Scholar
  53. Yukimoto S, Noda A, Kitoh A, Sugi M, Kitamura Y, Hosaka M, Shibata K, Maeda S, Uchiyama T (2001) A new Meteorological Research Institute coupled GCM (MRI-CGCM2): model climate and its variability. Pap Meteorol Geophys 51:47–88CrossRefGoogle Scholar
  54. Yulaeva E, Holton JR, Wallace JM (1994) On the cause of the annual cycle in tropical lower-stratospheric temperatures. J Atmos Sci 51:169–174CrossRefGoogle Scholar

Copyright information

© British Crown Copyright 2006

Authors and Affiliations

  • N. Butchart
    • 1
    Email author
  • A. A. Scaife
    • 2
  • M. Bourqui
    • 3
    • 4
  • J. de Grandpré
    • 4
  • S. H. E. Hare
    • 3
  • J. Kettleborough
    • 5
  • U. Langematz
    • 6
  • E. Manzini
    • 7
  • F. Sassi
    • 8
  • K. Shibata
    • 9
  • D. Shindell
    • 10
  • M. Sigmond
    • 11
  1. 1.Met OfficeExeter, DevonUK
  2. 2.Hadley CentreMet OfficeExeterUK
  3. 3.Department of MeteorologyUniversity of ReadingReadingUK
  4. 4.McGill UniversityMontrealCanada
  5. 5.Rutherford LaboratoryBritish Atmospheric Data CentreDidcotUK
  6. 6.Freie Universität of BerlinBerlinGermany
  7. 7.National Institute for Geophysics and VolcanologyBolognaItaly
  8. 8.National Center for Atmospheric ResearchBoulderUSA
  9. 9.Meteorological Research InstituteTsukubaJapan
  10. 10.NASA-Goddard Institute for Space StudiesNew YorkUSA
  11. 11.University of TorontoTorontoCanada

Personalised recommendations