Climate Dynamics

, Volume 27, Issue 6, pp 613–625 | Cite as

Ice-free glacial northern Asia due to dust deposition on snow

  • Gerhard Krinner
  • Olivier Boucher
  • Yves Balkanski


During the Last Glacial Maximum (LGM, 21 kyr BP), no large ice sheets were present in northern Asia, while northern Europe and North America (except Alaska) were heavily glaciated. We use a general circulation model with high regional resolution and a new parameterization of snow albedo to show that the ice-free conditions in northern Asia during the LGM are favoured by strong glacial dust deposition on the seasonal snow cover. Our climate model simulations indicate that mineral dust deposition on the snow surface leads to low snow albedo during the melt season. This, in turn, caused enhanced snow melt and therefore favoured snow-free peak summer conditions over almost the entire Asian continent during the LGM, whereas perennial snow cover is simulated over a large part of eastern Siberia when glacial dust deposition is not taken into account.


Dust Snow Cover Last Glacial Maximum Mineral Dust Dust Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was supported by the Fonds National de la Science (ACI Changement Climatique et Cryosphère). The simulations were carried out on the MIRAGE computer platform in Grenoble. We thank N. Mahowald for making her simulated present and glacial dust deposition fields available to us. The authors acknowledge the help of B. Crouzille in coding the snow albedo routine.


  1. Aoki T, Hachikubo A, Hori M (2003) Effects of snow physical parameters on shortwave broadband albedos. J Geophys Res 108:4616. DOI 10.1029/2003JD003506Google Scholar
  2. Armstrong RL, Brodzik MJ (2002) Northern Hemisphere EASE-Grid weekly snow cover and sea ice extent version 2. National Snow and Ice Data Center. CD-ROM, Boulder, CO, USAGoogle Scholar
  3. Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. German Weather Service, Offenbach, Germany. Digital media,
  4. Berger A (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  5. Brun E, Martin E, Simon V, Gendre C, Coleou C (1989) An energy and mass model of snow cover suitable for operational avalanche forecasting. J Glaciol 35:333–342Google Scholar
  6. Calov R, Ganopolski A, Claussen M, Petoukhiv V, Greve R (2005) Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Clim Dyn 24:545–561CrossRefGoogle Scholar
  7. Chalita S, Le Treut H (1994) The albedo of temperate and boreal forest in the northern hemisphere climate: a sensitivity experiment using the LMD AGCM. Clim Dyn 10:231–240CrossRefGoogle Scholar
  8. Claquin T, Schulz M, Balkanski Y (1999) Modeling the mineralogy of atmospheric dust sources. J Geophys Res 104:22243–22256CrossRefGoogle Scholar
  9. Claquin T, Roelandt C, Kohfeld KE, Harrison SP, Tegen I, Prentice IC, Balkanski Y, Bergametti G, Hansson M, Mahowald N, Rodhe H, Schulz M (2003) Radiative forcing of climate by ice-age atmospheric dust. Clim Dyn 20:193–202Google Scholar
  10. Clark PU, Lix AC (2002) Ice sheets and sea level of the Last Glacial Maximum Quat. Sci. Rev 21:1–7CrossRefGoogle Scholar
  11. CLIMAP Project Members (1984) The last interglacial ocean. Quat Res 21:123–224CrossRefGoogle Scholar
  12. Crowley T (1995) Ice age terrestrial carbon changes revisited. Glob Biogeochem Cyc 9:377–389CrossRefGoogle Scholar
  13. Douville H, Royer J-F, Mahfouf J-F (1995) A new snow parameterization for the Météo-France climate model, Part 1: validation in stand-alone experiments. Clim Dyn 12:37–52CrossRefGoogle Scholar
  14. Fuhrer K, Wolff E, Johnsen SJ (1999) Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100,000 years. J Geophys Res 104:31043–31052CrossRefGoogle Scholar
  15. Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Met Soc 73:1962–1970CrossRefGoogle Scholar
  16. Guelle W, Balkanski Y, Schulz M, Marticorena B, Bergametti G, Moulin C, Arimoto R, Perry KD (2000) Modelling the atmospheric distribution of mineral aerosol: comparison with ground measurements and satellite observations for yearly and synoptic time scales over the North Atlantic. J Geophys Res 105:1997–2005CrossRefGoogle Scholar
  17. Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Nat Acad Sci 101:423–428CrossRefGoogle Scholar
  18. Harrison SP, Kohfeld KE, Roelandt C, Claquin T (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Sci Rev 54:43–80CrossRefGoogle Scholar
  19. Harvey LDD (1988) Climatic impact of ice-age aerosols. Nature 334:333–335CrossRefGoogle Scholar
  20. Haywood J., Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543CrossRefGoogle Scholar
  21. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Le Van P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim DynGoogle Scholar
  22. Hubberten HW, Andreev A, Astakhov VI, Demidov I, Dowdeswell JA, Henriksen M, Hjort C, Houmark-Nielsen M, Jakobsson M, Kuzmina S, Larsen E, Lunkka JP, Lyså A, Mangerud J, Möller P, Saarnisto M, Schirrmeister L, Sher AV, Siegert C, Siegert MJ, Svendsen JI (2004) The periglacial climate and environment in northern Eurasia during the Last Glaciation. Quat Sci Rev 23:1333–1357CrossRefGoogle Scholar
  23. Jacobson MZ (2004) Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J Geophys Res 109:D21201. DOI 10.1029/2004JD004945Google Scholar
  24. Jacquinet-Husson N et al (1999) The 1997 spectroscopic GEISA databank. J Quant Spect Radiat Transfer 61:425–438Google Scholar
  25. Joussaume S, Taylor KE (1995) Status of the paleoclimate modeling intercomparison project (PMIP). In: Gates WL (ed) Proceedings of the first international AMIP scientific conference, Monterey, CA, pp 425–430. PMIP database:
  26. Krinner G, Mangerud J, Jakobsson M, Crucifix M, Ritz C, Svendsen JI (2004) Enhanced ice sheet growth in Eurasia owing to adjacent ice dammed lakes. Nature 427:429–433CrossRefGoogle Scholar
  27. Liao H, Seinfeld JH (1998) Radiative forcing by mineral dust aerosols: sensitivity to key variables. J Geophys Res 103:31637–31646CrossRefGoogle Scholar
  28. Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in global surface air temperature. Theor Appl Climatol 41:11–21CrossRefGoogle Scholar
  29. Lehmkuhl F, Owen LA (2005) Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 34:87–100CrossRefGoogle Scholar
  30. Mahowald N, Kohfeld KE, Hansson M, Balkanski Y, Harrison SP, Prentice IC, Schulz M, Rodhe H (1999) Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. 104:15895–15916CrossRefGoogle Scholar
  31. Makeyev VM, Bolshiyanov DY (1986) Characteristics of glacial sediments on the Severnaya Zemlya Archipelago. In: Kainozoi shel’fa i ostronov Rossiiskoi Arktiki. Leningrad, pp 127–132Google Scholar
  32. Mangerud J, Astakhov V, Murray A, Svendsen JI (2001) The chronology of a large ice-dammed lake and the Barents-Kara ice sheet advances. Glob Planet Change 31:321–336CrossRefGoogle Scholar
  33. Marshall S, Oglesby RJ (1994) An improved snow hydrology for GCMs. Part I: snow cover fraction, albedo, grain size, and age. Clim Dyn 10:21–37Google Scholar
  34. Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Morrison MC, Bloomfield P, Bond GC, Alley RB, Gow AJ, Grootes PM, Meese DA, Ram M, Taylor KC, Wumkes W (1994) Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263:1747–1751CrossRefGoogle Scholar
  35. Overpeck JT, Rind D, Lacis A, Healy R (1996) Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature 384:447–449CrossRefGoogle Scholar
  36. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  37. Peltier WR, Marshall S (1995) Coupled energy-balance/ice-sheet model simulations of the glacial cycle: a possible connection between terminations and terrigenous dust. J Geophys Res 100:14269–14290CrossRefGoogle Scholar
  38. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Beznder M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlaykov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core. Nature 399:426–436CrossRefGoogle Scholar
  39. Qian W, Quan L, Shi S (2002) Variations of the dust storm in China and its climatic control. J Climate 15:1216–1229CrossRefGoogle Scholar
  40. Roesch A, Wild M, Gilgen H, Ohmura A (2001) A new snow cover fraction parameterization for the ECHAM4 GCM. Clim Dyn 17:933–946CrossRefGoogle Scholar
  41. Siegert MJ, Marsiat I (2001) Numerical reconstructions of LGM climate across the Eurasian Arctic. Quat Sci Rev 20:1595–1605CrossRefGoogle Scholar
  42. Stauch G, Lehmkuhl F, Frechen M (2005) Pleistocene glacial advances in the Verkhoyansk Mountains, North-Eastern Siberia. Geophys Res Abstr 7:09061Google Scholar
  43. Steffensen JP (1997) The size distribution of microparticles from selected segments of the Greenland Ice Core Project ice core representing different climatic periods. J Geophys Res 102:26755–26763CrossRefGoogle Scholar
  44. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingólfsson O, Jakobsson M, Kjær KH, Larsen E, Lokrantz H, Lunkka JP, Lyså A, Mangerud J, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert MJ, Spielhagen RF, Stein R (2004) Late Quaternary ice sheet history of Eurasia. Quat Sci Rev 23:1229–1271CrossRefGoogle Scholar
  45. Takemura T, Nozawa T, Emori S, Nakajima TY, Nakajima T (2005) Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J Geophys Res 110:D02202. DOI 10.1029/2004JD005029Google Scholar
  46. Tarasov PE, Peyron O, Guiot J, Brewer S, Volkova VS, Bezusko LG, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK (1999) Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Clim Dyn 15:227–240CrossRefGoogle Scholar
  47. Warren WG, Wiscombe SG (1980) A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J Atmos Sci 37:2734–2745CrossRefGoogle Scholar
  48. Wiscombe SG, Warren WG (1980) A model for the spectral albedo of snow. I: pure snow. J Atmos Sci 37:2712–2733CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Gerhard Krinner
    • 1
  • Olivier Boucher
    • 2
    • 3
  • Yves Balkanski
    • 4
  1. 1.LGGE, CNRS-UJF GrenobleSaint Martin d’HèresFrance
  2. 2.LOA, CNRS-Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  3. 3.Hadley Centre for Climate Prediction and Research, Met OfficeExeterUK
  4. 4.LSCE, CEA/CNRS SaclayGif sur Yvette CedexFrance

Personalised recommendations