Climate Dynamics

, Volume 27, Issue 4, pp 437–440 | Cite as

Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints

  • V. Masson-Delmotte
  • M. Kageyama
  • P. Braconnot
  • S. Charbit
  • G. Krinner
  • C. Ritz
  • E. Guilyardi
  • J. Jouzel
  • A. Abe-Ouchi
  • M. Crucifix
  • R. M. Gladstone
  • C. D. Hewitt
  • A. Kitoh
  • A. N. LeGrande
  • O. Marti
  • U. Merkel
  • T. Motoi
  • R. Ohgaito
  • B. Otto-Bliesner
  • W. R. Peltier
  • I. Ross
  • P. J. Valdes
  • G. Vettoretti
  • S. L. Weber
  • F. Wolk
  • Y. Yu
Publisher’s Erratum

1 Climate Dynamics (2006) 26: 513–529

Unfortunately, author corrections to Figs. 2, 3a, b, and 4a, b were not carried out.

The correct versions are shown below.
Fig. 2

Annual mean global temperature changes simulated by a variety of climate models run under similar boundary conditions. The full range (dashed line), mean (cross symbol), 25th (lower bold dash symbol), 50th (grey square symbol), 75th (upper bold dash symbol) percentiles of the various model results are calculated from the distribution of the various model results (see Table 2). The “fix”, “slab” and “cpl” abbreviations refer to different configurations of models used and are described in Sect. 3 and Table 1

Fig. 3

a Central Greenland polar amplification (defined as the ratio between central Greenland and global annual mean temperature changes) simulated by climate models. The full range (dashed line), mean (cross symbol), 25th (lower bold dash symbol), 50th (grey square symbol), 75th (upper bold dash symbol) percentiles of the various model results are calculated from the distribution of the various model results (see Table 2). “corr” stands for elevationcorrected temperature values (see text). b Same as (a) but for central eastern Antarctica. Note that the vertical scale is half as small as for Greenland

Fig. 4

a Comparison of Last Glacial Maximum to control central Greenland annual mean temperature change simulated by climate models (PMIP2 coupled ocean-atmosphere simulations only) with the range of paleoclimatic reconstructions. Filled black squares show direct model results. Open black squares show model results corrected from LGM to control ice sheet elevation changes (“elevation corrected” results). Grey squares show model results corrected from elevation changes and precipitationweighted (“seasonality corrected” results). Horizontal long-dashed lines reflect the range of temperature change derived from Greenland borehole thermometry. Short dashed lines correspond to slopes of 1, 2 and 3 for reference. A linear regression calculated on the results of these four models is also displayed (solid black line and regression result). Values below zero are not displayed (results of ECBILT CLIO with corrections. b Same as (a) but for central Antarctica. Horizontal long-dashed lines reflect the range of temperature change derived from Antarctic ice core water stable isotopes. c Same as (a) but for future climate change simulations. Open black squares represent 4 × CO2 simulation anomalies, and filled black rhomboids 2 × CO2 simulation anomalies. The solid line is a linear regression on all the simulation results. The black dashed lines represent lines with slopes of 1 and 2. d Same as (b) but for future climate change simulations. Open black squares represent 4 × CO2 simulation anomalies, and filled black rhomboids 2 × CO2 simulation anomalies. The solid line is a linear regression on all the simulation results. The black dashed lines represent lines with slopes of 1 and 2

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • V. Masson-Delmotte
    • 1
  • M. Kageyama
    • 1
  • P. Braconnot
    • 1
  • S. Charbit
    • 1
  • G. Krinner
    • 2
  • C. Ritz
    • 2
  • E. Guilyardi
    • 1
  • J. Jouzel
    • 1
  • A. Abe-Ouchi
    • 3
    • 9
  • M. Crucifix
    • 4
  • R. M. Gladstone
    • 5
  • C. D. Hewitt
    • 4
  • A. Kitoh
    • 6
  • A. N. LeGrande
    • 7
  • O. Marti
    • 1
  • U. Merkel
    • 8
  • T. Motoi
    • 6
  • R. Ohgaito
    • 9
  • B. Otto-Bliesner
    • 10
  • W. R. Peltier
    • 11
  • I. Ross
    • 5
  • P. J. Valdes
    • 5
  • G. Vettoretti
    • 11
  • S. L. Weber
    • 12
  • F. Wolk
    • 13
  • Y. Yu
    • 14
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement(LSCE/IPSL, UMR CEA-CNRS 1572) L’Orme des MerisiersGif-sur-Yvette CedexFrance
  2. 2.Laboratoire de Glaciologie et de Géophysique de l’Environnement, (UMR 5183 CNRS-UJF)Domaine UniversitaireSt Martin d’HèresFrance
  3. 3.Center for Climate System ResearchThe University of TokyoKashiwaJapan
  4. 4.Hadley Centre for Climate Prediction and ResearchDevonUK
  5. 5.School of Geographical SciencesUniversity of BristolBristolUK
  6. 6.Climate Research DepartmentMeteorological Research InstituteIbarakiJapan
  7. 7.NASA Goddard Institute for Space Studies and Center for Climate Systems ResearchColumbia UniversityNew YorkUSA
  8. 8.IFM-GEOMARKielGermany
  9. 9.Frontier Research Center for Global Change (FRCGC)JAMSTECYokohama CityJapan
  10. 10.Climate Change ResearchNational Center for Atmospheric ResearchBoulderUSA
  11. 11.Department of PhysicsUniversity of TorontoTorontoCanada
  12. 12.Climate Variability ResearchRoyal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  13. 13.Institut d’Astronomie et de Géophysique G. LemaîtreUniversité catholique de LouvainLouvain-la-NeuveBelgium
  14. 14.LASG, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations