Advertisement

Climate Dynamics

, Volume 27, Issue 4, pp 333–344 | Cite as

Sensitivity of the last glacial inception to initial and surface conditions

  • Claudia KubatzkiEmail author
  • Martin Claussen
  • Reinhard Calov
  • Andrey Ganopolski
Article

Abstract

We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.

Keywords

Atmospheric General Circulation Model Earth System Model Glacial Inception Eemian Interglacial Perennial Snow Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Ralf Greve for providing us with the ice-sheet model SICOPOLIS. The authors would like to thank Alexandra Jahn for technical assistance. The work was funded by a subcontract to project 01LD0041 (DEKLIM-EEM) of the Bundesministerium für Bildung und Forschung (BMBF) and it was partly funded by the Deutsche Forschungsgemeinschaft (DFG) project CL 178/2-1.

References

  1. Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414CrossRefGoogle Scholar
  2. Barnola JM, Raynaud D, Lorius C, Barkov NI (1999) Historical CO2 record from the Vostok ice core. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Department of Energy, U.S., Oak RidgeGoogle Scholar
  3. Berger A (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  4. Berger A (2000) The role of CO2, sea-level and vegetation during the Milankovitch-forced glacial–interglacial cycles. In: Bengtsson L (ed) Geosphere–biosphere interactions and climate. Proceedings of the Workshop held at Pontifical Academy of SciencesGoogle Scholar
  5. Berger A, Loutre MF, Gallée H (1998) Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 kyear. Clim Dyn 14:615–629CrossRefGoogle Scholar
  6. Bonan G, Pollard D, Thompson S (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718CrossRefGoogle Scholar
  7. Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8:509–517CrossRefGoogle Scholar
  8. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles 16(4):1139. DOI 10.1029/2001GB001662Google Scholar
  9. Brovkin V, Levis S, Loutre M-F, Crucifix M, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V (2003) Stability analysis of the climate-vegetation system in the northern high latitudes. Clim Change 57:119–138CrossRefGoogle Scholar
  10. Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Lett 29:2216. DOI 10.1029/2002GL016078Google Scholar
  11. Calov R, Ganopolski A, Claussen M, Petoukhov V, Greve R (2005a) Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Clim Dyn 24(6):545–561. DOI 10.1007/s00382-005-0007-6Google Scholar
  12. Calov R, Ganopolski A, Petoukhov V, Claussen M, Brovkin V, Kubatzki C (2005b) Transient simulation of the last glacial inception. Part II: sensitivity and feedback analysis. Clim Dyn 24(6):563–576. DOI 10.1007/s00382-005-0008-5Google Scholar
  13. Chappell J, Omura A, Esat T, McCulloch M, Pandolfi J, Ota Y, Pillans B (1996) Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet Sci Lett 141:227–236CrossRefGoogle Scholar
  14. Clark PU, Clague JJ, Curry BB, Dreimanis A, Hicock SR, Miller SR, Miller GH, Berger GW, Eyles N, Lamothe M, Miller BB, Mott RJ, Oldale RN, Stea RR, Szabo JP, Thorleifson LH, Vincent J-S (1993) Initiation and development of the Laurentide and Cordilleran ice sheets following the last interglaciation. Quaternary Sci Rev 12:79–114CrossRefGoogle Scholar
  15. Claussen M (2001) Biogeophysical feedbacks and the dynamics of climate. In: Schulze ED, Harrison SP, Heimann M, Holland EA, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 61–71CrossRefGoogle Scholar
  16. Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur H-J (1999) Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys Res Lett 26(14):2037–2040CrossRefGoogle Scholar
  17. Crowley TJ, Baum SK (1995) Is the Greenland ice sheet bistable? Paleoceanogr Curr 10(3):357–363CrossRefGoogle Scholar
  18. Crucifix M, Loutre MF (2002) Transient simulations over the last interglacial period (126–115 kyear BP): feedback and forcing analysis. Clim Dyn 19:417–433CrossRefGoogle Scholar
  19. Cuffey KM, Marshall SJ (2000) Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 406:591–594CrossRefGoogle Scholar
  20. De Noblet NI, Prentice IC, Joussaume S, Texier D, Botta A, Haxeltine A (1996) Possible role of atmosphere–biosphere interactions in triggering the last glaciation. Geophys Res Lett 23(22):3191–3194CrossRefGoogle Scholar
  21. Dong B, Valdes PJ (1995) Sensitivity studies of northern hemisphere glaciation using an atmospheric general circulation model. J Clim 8:2471–2496CrossRefGoogle Scholar
  22. Gallimore RG, Kutzbach JE (1996) Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381:503–505CrossRefGoogle Scholar
  23. Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M (1998a) Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391:351–356CrossRefGoogle Scholar
  24. Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998b) The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene. Science 280:1916–1919CrossRefGoogle Scholar
  25. Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17:735–751CrossRefGoogle Scholar
  26. Greve R (1997) A continuum-mechanical formulation for shallow polythermal ice sheets. Philos Trans R Soc Lond A355:921–974CrossRefGoogle Scholar
  27. Harvey LDD (1989) Milankovitch forcing, vegetation feedback, and North Atlantic deep-water formation. J Clim 2:800–815CrossRefGoogle Scholar
  28. Kageyama M, Charbit S, Ritz C, Khodri M, Ramstein G (2004) Quantifying ice-sheet feedbacks during the last glacial inception. Geophys Res Lett 31:L24203. DOI 10.1029/2004GL021339Google Scholar
  29. Khodri M, Leclainche Y, Ramstein G, Braconnot P, Marti O, Cortijo E (2001) Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410:570–574CrossRefPubMedGoogle Scholar
  30. Kubatzki C, Montoya M, Rahmstorf S, Ganopolski A, Claussen M (2000) Comparison of a coupled global model of intermediate complexity and an AOGCM for the last interglacial. Clim Dyn 16:799–814CrossRefGoogle Scholar
  31. Marshall SJ, Clarke GKC (1999) Ice sheet inception: subgrid hypsometric parameterization of mass balance in an ice sheet model. Clim Dyn 15:533–550CrossRefGoogle Scholar
  32. Meissner KJ, Weaver AJ, Matthews HD, Cox PJ (2003) The role of land-surface dynamics in glacial inception: a study with the UVic Earth system model. Clim Dyn 21(7–8):515–537CrossRefGoogle Scholar
  33. North Greenland Ice Core Project members (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  34. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  35. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  36. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43:353–367CrossRefGoogle Scholar
  37. Siddall M, Rohling EJ, Almogi-Labin A, Hemleben Ch, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858CrossRefPubMedGoogle Scholar
  38. Stirling CH, Esat TM, Lambeck K, McCulloch MT (1998) Timing and duration of the last interglacial: evidence for a restricted interval of widespread coral reef growth. Earth Planet Sci Lett 160:745–762CrossRefGoogle Scholar
  39. Stocker T, Wright D, Mysak L (1992) A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J Clim 5:773–797CrossRefGoogle Scholar
  40. Vettoretti G, Peltier WR (2003) Post-Eemian glacial inception. Part I: the impact of summer seasonal temperature bias. J Clim 16(6):889–911CrossRefGoogle Scholar
  41. Vettoretti G, Peltier WR (2004) Sensitivity of glacial inception to orbital and greenhouse gas climate forcing. Quaternary Sci Rev 23:499–519CrossRefGoogle Scholar
  42. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Sci Rev 21:295–305CrossRefGoogle Scholar
  43. Wang Z, Mysak LA (2002) Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophys Res Lett 29(23):2102. DOI 10.1029/2002GL015120Google Scholar
  44. Yoshimori M, Reader MC, Weaver AJ, McFarlane NA (2002) On the causes of glacial inception at 116 ka BP. Clim Dyn 18:383–402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Claudia Kubatzki
    • 1
    Email author
  • Martin Claussen
    • 1
  • Reinhard Calov
    • 1
  • Andrey Ganopolski
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations