Climate Dynamics

, Volume 27, Issue 4, pp 333–344

Sensitivity of the last glacial inception to initial and surface conditions

  • Claudia Kubatzki
  • Martin Claussen
  • Reinhard Calov
  • Andrey Ganopolski
Article

DOI: 10.1007/s00382-006-0136-6

Cite this article as:
Kubatzki, C., Claussen, M., Calov, R. et al. Clim Dyn (2006) 27: 333. doi:10.1007/s00382-006-0136-6

Abstract

We investigate the sensitivity of simulations of the last glacial inception (LGI) with respect to initial (size of the Greenland ice sheet) and surface (state of ocean/vegetation) conditions and two different CO2 reconstructions. Utilizing the CLIMBER-2 Earth system model, we obtain the following results: (a) ice-sheet expansion in North America at the end of the Eemian can be reduced or even completely suppressed when pre-industrial or Eemian ocean/vegetation is prescribed. (b) A warmer surrounding ocean and, in particular, a large Laurentide ice sheet reduce the size of the Greenland ice sheet before and during the LGI. (c) A changing ocean contributes much stronger to the expansion of the Laurentide ice sheet when we apply the CO2 reconstruction according to Barnola et al. (Nature 329:408–414, 1987) instead of Petit et al. (Nature 399:429–436, 1999). (d) In the fully coupled model, the CO2 reconstruction used has only a small impact on the simulated ice sheets but it does impact the course of the climatic variables. (e) For the Greenland ice sheet, two equilibrium states exist under the insolation and CO2 forcing at 128,000 years before present (128 kyear BP); the one with an ice sheet reduced by about one quarter as compared to its simulated pre-industrial size and the other with nearly no inland ice in Greenland. (f) Even the extreme assumption of no ice sheet in Greenland at the beginning of our transient simulations does not alter the simulated expansion of northern hemispheric ice sheets at the LGI.

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Claudia Kubatzki
    • 1
  • Martin Claussen
    • 1
  • Reinhard Calov
    • 1
  • Andrey Ganopolski
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Alfred Wegener Institute for Polar- and Marine ResearchBremerhavenGermany
  3. 3.Meteorological InstituteUniversity of Hamburg and Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations