Climate Dynamics

, Volume 27, Issue 2–3, pp 199–214 | Cite as

Influence of observed and RCM-simulated precipitation on the water discharge over the Sirba basin, Burkina Faso/Niger

  • Christophe MessagerEmail author
  • Hubert Gallée
  • Olivier Brasseur
  • Bernard Cappelaere
  • Christophe Peugeot
  • Luc Séguis
  • Michel Vauclin
  • Romain Ramel
  • Gilles Grasseau
  • Laurent Léger
  • Denis Girou


The forcing of a hydrologic model (ABC) by both observed and simulated precipitation from a regional climate model (MAR) has been performed over the Sirba watershed (39,000 km2) located in the Sahelian region. Two aspects have been more specifically examined: the spatial and temporal representations of precipitation. The comparison between simulated and observed discharges—using observed rainfall datasets as forcing of the hydrologic model—has shown that the representation of daily precipitation (which is mainly convective in the Sahelian region) was not sufficiently accurate to correctly simulate the hydrologic response of the watershed. Since this response drives the soil water budget and consequently the amount of evaporation in forthcoming coupling experiments, it is thus necessary to develop more realistic infra-daily precipitation associated with convective events. A new temporal disaggregation scheme has been then developed. Considering observed as well as simulated precipitation fields, this method has significantly improved the simulated discharge at the catchment outlet. The major role played by the temporal component compared to spatial component of the precipitation has been then underlined. In addition, the present study shows the unsuitability of the simulated precipitation from the RCM to directly force a hydrologic model at infra daily timescale even if the cumulative amount and the main features of the precipitation seasonal cycle are well simulated.


Regional Climate Model Hydrologic Model Overland Flow West African Monsoon Flood Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research is a part of the PPL3-COUMEHY project funded by the French program ACI-GRID 2001 (Ministère de la Recherche). It is also a contribution of the European project DEISA (Distributed European Infrastructure for Supercomputing Applications). All major computations were realized with the CNRS-IDRIS computing resources. Authors particularly thank the Niger-DRE (Direction des Ressources en Eau) for the access to the Sirba river discharge data. The GLC, IRD, and ECMWF institutions were helpful for providing the authors with their indispensable datasets. Authors also thank the two anonymous reviewers for their comments that help us to improve this paper.


  1. Amani A, Lebel T (1996) Typology of rainfall fields to improve rainfall estimation in the Sahel by the area threshold method. Water Resour Res 8:2473–2487CrossRefGoogle Scholar
  2. Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass flux convection scheme for regional and global models. QJR Meteorol Soc 127:869–886CrossRefGoogle Scholar
  3. Cappelaere B, Peugeot C, Maia A (2001) The ABC physically-based, spatially-distributed hydrological model. Institut de Recherche pour le Développement (IRD), Montpellier, France. (
  4. Cassano JJ, Box JE, Bromwich DH, Li L, Steffen K (2001) Evaluation of polar MM5 simulations of Greenland’s atmospheric circulation. J Geophys Res 106:867–890CrossRefGoogle Scholar
  5. Cazenave A, Valentin C (1992) A runoff capabilities classification system based on surface features criteria in semiarid areas of West Africa. J Hydrol 130:231–249CrossRefGoogle Scholar
  6. Clapp RB, Hornberger GM (1978) Empirical equations for some hydraulic properties. Water Resour Res 16:601–604CrossRefGoogle Scholar
  7. Clark BC, Xue Y, Harding RJ, Valdes P (2001) Modeling the impact of land surface degradation on the climate of Tropical North Africa. J Clim 8:1809–1822CrossRefGoogle Scholar
  8. Cook KH (1994) Mechanism by which surface drying perturbs tropical precipitation fields. J Clim 7:400–413CrossRefGoogle Scholar
  9. Cook KH (1999) Generation of the African Easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184CrossRefGoogle Scholar
  10. D’Amato N, Lebel T (1998) On the characteristics of the rainfall events in the Sahel with a view to the analysis of climatic variability. Int J Climatol 18:955–974CrossRefGoogle Scholar
  11. De Ridder K, Gallée H (1998) Land Surface-induced regional climate change in Southern Israel. J Appl Meteorol 37:1470–1485CrossRefGoogle Scholar
  12. De Ridder K, Schayes G (1997) The IAGL land surface model. J Appl Meteorol 36:167–182CrossRefGoogle Scholar
  13. Derive G (2003) Estimation de l’évapotranspiration en region sahélienne. Synthèse des connaissances et évaluation par modélisation (SISVAT, Ritchie). Application à la zone Hapex-Sahel (Niger). Phd Thesis, Institut National Polytechnique de Grenoble, FranceGoogle Scholar
  14. Desconnet JC, Vieux BE, Cappelaere B, Delclaux F (1996) A GIS for hydrological modelling in the semiarid Hapex Sahel experiment area of Niger, Africa. Trans GIS 1(2):82–84CrossRefGoogle Scholar
  15. D’Herbès JM, Valentin C (1997) Land surface conditions of the Niamey region: ecological and hydrological implications. J Hydrol 188–189:18–42CrossRefGoogle Scholar
  16. Dolman AJ, Gash JHC, Goutorbe JP, Kerr Y, Lebel T, Prince SD, Strickler JNM (1997) The role of the land surface in Sahelian climate: HAPEX-Sahel results and future research needs. J Hydrol 188–189:1067–1079CrossRefGoogle Scholar
  17. Douville H, Chauvin F, Broqua H (2001) Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J Clim 14:2381–2402CrossRefGoogle Scholar
  18. Druyan LM, Fulakeza (2000) Regional model simulations of African wave disturbance. J Geophys Res 105:7231–7255CrossRefGoogle Scholar
  19. Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperatures. Nature 320:602–607CrossRefGoogle Scholar
  20. Fontaine B, Trzaska S, Janicot S (1998) Evolution of the relationship between near global and Atlantic SST modes and the rainy season in West Africa: statistical analyses and sensitivity experiments. Clim Dyn 14:353–368CrossRefGoogle Scholar
  21. Fouquart Y, Bonnel B (1980) Computation of the solar heating of the Earth’s atmosphere: a new parameterization. Beitr phys Atmos 53:35–62Google Scholar
  22. Gallée H (1995) Simulation of the Mesocyclonic activity in the Ross Sea. Antarct Mon Wea Rev 123:2051–2069CrossRefGoogle Scholar
  23. Gallée H, Schayes G (1994) Development of a three-dimensional meso gamma primitive equations model. Katabatic winds simulation in the area of Terra Nova Bay. Antarct Mon Wea Rev 122:671–685CrossRefGoogle Scholar
  24. Gallée H, Guyomarc’h G, Brun E (2001) Impact of snow drift on the antartic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary Layer Meteorol 99:1–19CrossRefGoogle Scholar
  25. Gallée H, Moufouma-Okia W, Brasseur O, Dupays I, Marbaix P, Messager C, Ramel R, Lebel T (2004) A high resolution simulation of a West African rainy season using a regional climate model. J Geophys Res 109:D5CrossRefGoogle Scholar
  26. Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual and interdecadal time scales. Science DOI 10.1126/science. 1089357Google Scholar
  27. Giorgi F (1990) On the simulation of regional climate using a limited area model nested in a general circulation model. J Clim 3:941–963CrossRefGoogle Scholar
  28. Giorgi F, Marinucci M (1991) Validation of a regional atmospheric model over Europe: sensitivity of wintertime and summertime simulations to selected physics parameterisation and lower boundary conditions. Quart J Roy Meteor Soc 117:1171–1206CrossRefGoogle Scholar
  29. Giorgi F, Marinucci M, Visconti G (1992) A 2xCO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. Part II: Climate change scenario. J Geophys Res 97:10011–10028Google Scholar
  30. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modelling revisited. J Geophys Res 104:6335–6352CrossRefGoogle Scholar
  31. Gong C, Eltahir E (1996) Source of moisture for rainfall in West Africa. Water Resour Res 32(10):3115–3121CrossRefGoogle Scholar
  32. Goutorbe JP, Lebel T, Ting A, Bessemoulin P, Brouwer J, Dolmann AJ, Engman ET, Gash JHC, Hoepfner M, Kebat P, Kerr YH, Monteny B, Prince S, Said F, Sellers P, Wallace JS (1994) HAPEX-Sahel: a large-scale study of land-atmosphere interactions in the semi-arid tropics. Ann Geophys 12:53–64CrossRefGoogle Scholar
  33. Green WH, Ampt GA (1911) Studies in soil physics, I: The flow of air and water through soils. J Agri Sci 4:1–24CrossRefGoogle Scholar
  34. Guillot G, Lebel T (1999) Disaggregation of Sahelian Meso-Scale convective Systems Rain Fields: further developments and validation. J Geophys Res 104:31533CrossRefGoogle Scholar
  35. Hillel D (1971) Soil and water: physical principles and processes. Academic, New York, pp 288Google Scholar
  36. Janicot S, Moron V, Fontaine B (1996) Sahel drought and ENSO dynamics. Geophys Res Lett 23:515–518CrossRefGoogle Scholar
  37. Jenkins GS (1997) The 1988 and 1990 summer season simulations for West Africa using a regional climate model. J Clim 10:1255–1272CrossRefGoogle Scholar
  38. Jenkins GS, Garba A, Simeon F (2002) The challenge of modelling climate variability and change in West Africa. Clim Change 52:263–286CrossRefGoogle Scholar
  39. Jones R, Murphy J, Noguer M (1995) Simulation of climate change over Europe using a nested regional climate model. Assessment of control climate, including sensitivity to location of boundaries. Quart J Roy Meteor Soc 121:1413–1449CrossRefGoogle Scholar
  40. Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation. Meteorol Monogr 10:32Google Scholar
  41. Koster RD, Dirmeyer P, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S,McAveney B, Mitcell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140CrossRefPubMedGoogle Scholar
  42. Koster RD, Suarez MJ (1995) Relative contributions of land and ocean processes to precipitation variability. J Geophys Res 100(13):775–790CrossRefGoogle Scholar
  43. Kutilek M, Nielsen DR (1994) Soil hydrology. Catena Verlag Publ, Germany, pp 370Google Scholar
  44. Lamb P (1978) Large-scale tropical Atlantic surface circulation patterns associated with sub-Saharan anomalies. Tellus 30:240:251Google Scholar
  45. Lamb P, Peppler RA (1992) Further case studies of tropical Atlantic surface atmospheric and oceanic patterns associated with sub-Saharan drought. J Clim 5:476–488CrossRefGoogle Scholar
  46. Lare AR, Nicholson SE (1994) Contrasting conditions of surface water balance in wet years and dry years as a possible land surface-atmosphere feedback mechanism in the west African Sahel. J Clim 7:653–668CrossRefGoogle Scholar
  47. Le Barbé L, Lebel T, Tapsoba D (2002) Rainfall variability in West Africa during the years 1950–90. J Clim 15:187–202CrossRefGoogle Scholar
  48. Le barbé L, Lebel T (1997) Rainfall climatology of the HAPEX-Sahel region during the years 1950–1990. J Hydrol 188–189:43–73CrossRefGoogle Scholar
  49. Lebel T, Taupin JD, D’Amato N (1997) Rainfall monitoring during HAPEX-Sahel. 1. General rainfall conditions and climatology. J Hydrol 188–189:74–96CrossRefGoogle Scholar
  50. Lebel T, Sauvageot H, Hoepffner M, Desbois M, Guillot B, Hubert P (1992) Rainfall estimation in the Sahel: The EPSAT-Niger experiment. Hydrol Sci J 37:201–215CrossRefGoogle Scholar
  51. Levkov L, Rockel B, Kapitza H, Raschke E (1992) 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr Phys Atmos 65:35–57Google Scholar
  52. Lin YL, Farley RD, Orville HD (1983) Bulk parametrization of the snow field in a cloud model. J Appl Meteorol 22:1065–1092CrossRefGoogle Scholar
  53. Marbaix P, Gallée H, Brasseur O, Van Ypersele JP (2003) Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Month Weather Rev 131:461–479CrossRefGoogle Scholar
  54. Martin-Vide JP, Ninerola D, Bateman A, Navarro A, Velasco E (1999) Runoff and sediment transport in a torrential ephemeral stream of the Mediteranean coast. J Hydrol 225(3–4):118–129CrossRefGoogle Scholar
  55. Mayaux E, Bartholomé E, Cabral A, Cherlet M, Defourny P, Di Gregorio A, Diallo O, Massart M, Nonguierma A, Pekel JF, Pretorius C, Vancutsem C, Vasconcelos M (2003) The land cover map for Africa in the year 2000. GLC2000 database, European Commission Joint Reasearch Centre.
  56. Messager C, Gallée H, Brasseur O (2004) Precipitation sensitivity to regional SST in a regional climate simulation during the West African monsoon for two dry years. Clim Dyn 22:249–266CrossRefGoogle Scholar
  57. Meyers MP, DeMott PJ, Cotton WR (1992) New primary ice-nucleation parameterizations in an explicit cloud model. J Appl Meteorol 31:708–721CrossRefGoogle Scholar
  58. Michaux J, Soroochian S (1994) Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed. Water Resour Res 30(3):593–605CrossRefGoogle Scholar
  59. Morcrette JJ (1984) Sur la paramétrisation du rayonnement dans les modèles de la circulation générale atmosphérique. Ph.D. thesis, Univ. des Sci. et Tech. de Lille, Lille, France, pp 373Google Scholar
  60. Moufouma-Okia (2003) Régionalisation du climat de l’Afrique de l’Ouest. Ph.D. thesis, Institut National Polytechnique de Grenoble. France, pp 178Google Scholar
  61. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I: a discussion of principles. J Hydrol 10(3):282–290CrossRefGoogle Scholar
  62. Nicholson SE (1989) African drought: Characteristics, casual theories and global connections. Understanding climate change. Geophys Monogr 52:79–100Google Scholar
  63. Oliver A, Webster R (1990) Kriging: a method of interpolation for geographical information system. Int J Geogr Inform Syst 4(3):313–332CrossRefGoogle Scholar
  64. Peugeot C, Cappelaere B, Vieux BE, Seguis L, Maia A (2003) Hydrologic proces simulation of a semiarid, endoreic catchment in Sahelin West Niger. 1. Model-aided data analysis and screening. J Hydrol 279:224–243CrossRefGoogle Scholar
  65. Ramel R (2005) Impact des processus de surface sur le climat de l’Afrique de l’Ouest. Ph.D. thesis, Université Joseph Fourier. France, pp 149Google Scholar
  66. Ramel R, Gallée H, Messager (2006) On the northwards “abrupt-shift” of the West African Monsoon. Clim Dyn J DOI 10.1007/s00382–005–0093–5Google Scholar
  67. Reynolds RW, Smith MT (1995) A high-resolution Global Sea surface temperature climatology. J Clim 8:1571–1583CrossRefGoogle Scholar
  68. Rodwel MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts, QJR Meteorol Soc 122:1385–1580CrossRefGoogle Scholar
  69. Rowell DP, Folland CK, Maskell K, Owen JA, Ward MN (1992) Modelling the influence of global sea surface temperatures on the variability and predictability of seasonal Sahel rainfall. Geophys Res Lett 19:905–908CrossRefGoogle Scholar
  70. Semazzi FH, Mehta V, Sud YC (1988) An investigation of the relationship between Sub-Saharian rainfall and global sea surface temperature. Atmos-Ocean 26:118–138Google Scholar
  71. Seguis L, Cappelaere B, Peugeot C, Vieux BE (2002) Impact on Sahelian runoff of stochastic and elevation-induced spatial distributions of soil parameters. Hydrol Process 16:313–332CrossRefGoogle Scholar
  72. Taylor C, Lambin EF, Stephenne N, Harding RJ, Essery RLH (2002) The influence of Land use change on Climate in the Sahel. J Clim 15:3615–3629CrossRefGoogle Scholar
  73. USACE (1993) Grass 4.1 User’s Reference Manuel. US Army Corps of Engineers Construction Engineering Research Lab. Champaign, IL, USA, pp 556Google Scholar
  74. Vauclin M (1983) Méthodes d’étude de la variabilité spatiale des propriétés d’un sol. In: Inra (eds) Variabilité spatiale des processus de transfert dans les sols. Paris, France, pp 9–43Google Scholar
  75. Vieux BE, Gaur N (1994) Finite-element modelling of storm water runoff using Grass GIS. Microcomput. In Civil Eng 9(4):263–270Google Scholar
  76. Vizy EK, Cook KH (2001) Mechanisms by which Gulf of Guinea and Eastern North Atlantic Sea Surface temperature anomalies can influence African rainfall. J Clim 14:795–821CrossRefGoogle Scholar
  77. Walters MO (1990) Transmission losses in arid region. J Hydraul Eng 116(1):129–138CrossRefGoogle Scholar
  78. Woolhiser DA, Smith RE, Giraldez JV (1996) Effects of a spatial variability of saturated hydraulic conductivity on Hortonian overland flow. Water Resour Res 32(3):671–678CrossRefGoogle Scholar
  79. Zheng X, Eltahir EAB (1998) A soil moisture-rainfall feedback mechanism: 2. Numerical experiments. Water Resour Res 34:777–785CrossRefGoogle Scholar
  80. Zheng X, Eltahir EAB, Emanuel KA (1999) A mechanism relating tropical Atlantic spring sea surface temperature and west African rainfall. QJR Meteorol Soc 125:1129–1163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Christophe Messager
    • 1
    Email author
  • Hubert Gallée
    • 2
  • Olivier Brasseur
    • 3
  • Bernard Cappelaere
    • 4
  • Christophe Peugeot
    • 4
  • Luc Séguis
    • 4
  • Michel Vauclin
    • 1
  • Romain Ramel
    • 1
  • Gilles Grasseau
    • 5
  • Laurent Léger
    • 5
  • Denis Girou
    • 5
  1. 1.Laboratoire d’étude des Transferts en Hydrologie et EnvironnementUMR 5564 CNRS-INPG-IRD-UJF, BP53Grenoble Cedex 9France
  2. 2.Laboratoire de Glaciologie et de Géophysique de l’Environnementrue MolièreSaint Martin d’Hères CedexFrance
  3. 3.Cellule Interregionale de l’EnvironnementBruxellesBelgique
  4. 4.Hydrosciences UMR CNRS-IRD-UMII, BP 64501Montpellier Cedex 5France
  5. 5.Institut du Développement et des Ressources en Informatique ScientifiqueCNRS Bâtiment 506, BP 167Orsay cedexFrance

Personalised recommendations