Climate Dynamics

, Volume 26, Issue 6, pp 587–600 | Cite as

Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity

  • V. Brovkin
  • M. Claussen
  • E. Driesschaert
  • T. Fichefet
  • D. Kicklighter
  • M. F. Loutre
  • H. D. Matthews
  • N. Ramankutty
  • M. Schaeffer
  • A. Sokolov
Article

Abstract

Six Earth system models of intermediate complexity that are able to simulate interaction between atmosphere, ocean, and land surface, were forced with a scenario of land cover changes during the last millennium. In response to historical deforestation of about 18 million sq km, the models simulate a decrease in global mean annual temperature in the range of 0.13–0.25°C. The rate of this cooling accelerated during the 19th century, reached a maximum in the first half of the 20th century, and declined at the end of the 20th century. This trend is explained by temporal and spatial dynamics of land cover changes, as the effect of deforestation on temperature is less pronounced for tropical than for temperate regions, and reforestation in the northern temperate areas during the second part of the 20th century partly offset the cooling trend. In most of the models, land cover changes lead to a decline in annual land evapotranspiration, while seasonal changes are rather equivocal because of spatial shifts in convergence zones. In the future, reforestation might be chosen as an option for the enhancement of terrestrial carbon sequestration. Our study indicates that biogeophysical mechanisms need to be accounted for in the assessment of land management options for climate change mitigation.

References

  1. Alcamo J, Leemans R, Kreileman EE (1998) Global change scenarios in the 21st century: results from the IMAGE 2.1 model, vol. Elseviers Science, LondonGoogle Scholar
  2. Bauer E, Claussen M, Brovkin V, Huenerbein A (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett 30:1276. DOI 10.1029/2002GL016639Google Scholar
  3. Bertrand C, Loutre MF, Crucifix M, Berger A (2002) Climate of the last millennium: a sensitivity study. Tellus A Dyn Meteorol Oceanogr 54:221–244Google Scholar
  4. Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190CrossRefPubMedGoogle Scholar
  5. Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmos Sci Lett 2:39–51. DOI 10.1006/asle.2001.0023Google Scholar
  6. Bonan GB (1999) Frost followed the plow: Impacts of deforestation on the climate of the United States. Ecol Appl 9:1305–1315CrossRefGoogle Scholar
  7. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718CrossRefGoogle Scholar
  8. Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8:509–517CrossRefGoogle Scholar
  9. Brovkin V, Ganopolski A, Svirezhev Y (1997) A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol Model 101:251–261CrossRefGoogle Scholar
  10. Brovkin V, Sitch S, von Bloh W, Claussen M, Bauer E, Cramer W (2004) Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biol 10:1253–1266CrossRefGoogle Scholar
  11. Chase TN, Pielke RA, Kittel TGF, Nemani RR, Running SW (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dyn 16:93–105CrossRefGoogle Scholar
  12. Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28:1011–1014CrossRefGoogle Scholar
  13. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586CrossRefGoogle Scholar
  14. Colman R (2003) A comparison of climate feedbacks in general circulation models. Clim Dyn 20:865–873Google Scholar
  15. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefPubMedGoogle Scholar
  16. Crucifix M, Loutre MF, Tulkens P, Fichefet T, Berger A (2002) Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Clim Dyn 19:43–60CrossRefGoogle Scholar
  17. DeFries RS, Bounoua L, Collatz GJ (2002) Human modification of the landscape and surface climate in the next fifty years. Global Change Biol 8:438–458CrossRefGoogle Scholar
  18. DeFries RS, Townshend JRG (1994) NDVI-derived land-cover classifications at a global-scale. Int J Remote Sens 15:3567–3586CrossRefGoogle Scholar
  19. Delire C, Behling P, Coe MT, Foley JA, Jacob R, Kutzbach J, Liu ZY, Vavrus S (2001) Simulated response of the atmosphere-ocean system to deforestation in the Indonesian Archipelago. Geophys Res Lett 28:2081–2084CrossRefGoogle Scholar
  20. Feddema J, Oleson K, Bonan G, Mearns L, Washington W, Meehl G, Nychka D (2005) A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present-day land cover representations. Clim Dyn 25:581–609. DOI 10.1007/s00382-005-0038-zGoogle Scholar
  21. Foley JA, Costa MH, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44Google Scholar
  22. Gallée H, van Ypersele JP, Fichefet T, Tricot C, Berger A (1991) Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. Part I: the climate model. J Geophys Res 96:13:139–113,161Google Scholar
  23. Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17:735–751CrossRefGoogle Scholar
  24. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355CrossRefGoogle Scholar
  25. Goosse H, Renssen H, Timmermann A, Bradley RS (2005) Internal and forced climate variability during the last millennium: a model-data comparison using ensemble simulations. Quaternary Sci Rev 24:1345–1360CrossRefGoogle Scholar
  26. Hansen J, Sato M, Lacis A, Ruedy R, Tegen I, Matthews E (1998) Perspective: climate forcings in the industrial era. Proc Natl Acad Sci 95:12753–12758CrossRefPubMedGoogle Scholar
  27. Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, McGuffie K, Pitman AJ (1993) Tropical deforestation—modeling local-scale to regional-scale climate change. J Geophys Res Atmos 98:7289–7315CrossRefGoogle Scholar
  28. Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr 53:235–262CrossRefGoogle Scholar
  29. IPCC (2001) Climate change 2001: The scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson C (eds) Contribution of working Group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  30. Kabat P, Claussen M, Dirmeyer PA, Gash JHC, de Guenni LB, Meybeck M, Vörösmarty CJ, Hutjes RWA, Lütkemeier S (eds) (2004) Vegetation, water, humans and the climate: A new perspective on an interactive system, Springer, BerlinGoogle Scholar
  31. Keeling CD, Whorf TP (2005) Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennesse, USAGoogle Scholar
  32. Kleidon A, Fraedrich K, Heimann M (2000) A green planet versus a desert world: estimating the maximum effect of vegetation on the land surface climate. Clim Change 44:471–493CrossRefGoogle Scholar
  33. Klein Goldewijk K (2001) Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochem Cycles 15:417–433CrossRefGoogle Scholar
  34. Leemans R, Eickhout B, Strengers B, Bouwman L, Schaeffer M (2002) The consequences of uncertainties in land use, climate and vegetation responses on the terrestrial carbon. Sci China 45:126–142Google Scholar
  35. Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820. DOI 10.1029/2003GL017814Google Scholar
  36. Matthews E (1983) Global vegetation and land use: new high-resolution data bases for climate studies. J Clim Appl Meteor 22:474–487CrossRefGoogle Scholar
  37. Matthews HD, Weaver AJ, Eby M, Meissner KJ (2003) Radiative forcing of climate by historical land cover change. Geophys Res Lett 30:1055. DOI 10.1029/2002GL016098Google Scholar
  38. Matthews HD, Weaver AJ, Meissner KJ, Gillett NP, Eby M (2004) Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim Dyn 22:461–479CrossRefGoogle Scholar
  39. Myhre G, Myhre A (2003) Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. J Clim 16:1511–1524Google Scholar
  40. Neftel A, Friedli H, Moor E, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1994) Historical CO2 record from the Siple station ice core. In Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennesse, USAGoogle Scholar
  41. Nemani RR, Running SW, Pielke RA, Chase TN (1996) Global vegetation cover changes from coarse resolution satellite data. J Geophys Res Atmos 101:7157–7162CrossRefGoogle Scholar
  42. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus A Dyn Meteorol Oceanogr 50:348–367Google Scholar
  43. Petoukhov V, Claussen M, Berger A, Crucifix M, Eby M, Eliseev AV, Fichefet T, Ganopolski A, Goosse H, Kamenkovich I, Mokhov I, Montoya M, Mysak LA, Sokolov A, Stone P, Wang Z, Weaver AJ (2005) EMIC Intercomparison Project (EMIP-CO2): Comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Clim Dyn; DOI 10.1007/s00382-00005-00042-00383Google Scholar
  44. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  45. Pitman AJ, Zhao M (2000) The relative impact of observed change in land cover and carbon dioxide as simulated by a climate model. Geophys Res Lett 27:1267–1270CrossRefGoogle Scholar
  46. Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027CrossRefGoogle Scholar
  47. Renssen H, Goosse H, Fichefet T (2003) On the non-linear response of the ocean thermohaline circulation to global deforestation. Geophys Res Lett 30:1061. DOI 10.1029/2002GL016155Google Scholar
  48. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293CrossRefGoogle Scholar
  49. Sitch S, Brovkin V, von Bloh W, van Vuuren D, Eickhout B, Ganopolski A (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Global Biogeochem Cycles 19:GB2013. DOI 10.1029/2004GB002311Google Scholar
  50. Snyder PK, Delire C, Foley JA (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23:279–302CrossRefGoogle Scholar
  51. Sokolov AP, Stone PH (1998) A flexible climate model for use in integrated assessments. Clim Dyn 14:291–303CrossRefGoogle Scholar
  52. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  53. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang HX, Yoshimori M (2001) The UVic earth system climate model: model description, climatology, and applications to past, present and future climates. Atmosphere-Ocean 39:361–428Google Scholar
  54. Wilson MF, Henderson-Sellers A (1985) A global archive of land cover and soils data for use in general circulation climate models. J Clim 5:119–143CrossRefGoogle Scholar
  55. Zhang H, Henderson-Sellers A, McGuffie K (2001) The compounding effects of tropical deforestation and greenhouse warming on climate. Clim Change 49:309–338CrossRefGoogle Scholar
  56. Zhao M, Pitman AJ (2002) The impact of land cover change and increasing carbon dioxide on the extreme and frequency of maximum temperature and convective precipitation. Geophys Res Lett 29. DOI 10.1029/2001GL013476Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • V. Brovkin
    • 1
  • M. Claussen
    • 2
  • E. Driesschaert
    • 3
  • T. Fichefet
    • 3
  • D. Kicklighter
    • 4
  • M. F. Loutre
    • 3
  • H. D. Matthews
    • 5
  • N. Ramankutty
    • 6
  • M. Schaeffer
    • 7
  • A. Sokolov
    • 8
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Potsdam Institute for Climate Impact Research and Institute of Physics, Potsdam UniversityPotsdamGermany
  3. 3.Institut d’Astronomie et de Géophysique Georges LemaîtreUniversité catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  5. 5.Department of Geography, University of Calgary, Calgary, and School of Earth and Ocean Sciences, University of VictoriaVictoriaCanada
  6. 6.Center for Sustainability and the Global Environment (SAGE), Nelson Institute for Environmental StudiesUniversity of Wisconsin-MadisonMadisonUSA
  7. 7.Department of Global Sustainability and Climate, Netherlands Environmental Assessment Agency (MNP)—RIVM, and Climate Variability Research Division, Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  8. 8.Joint Program on the Science and Policy of Global ChangeMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations