Climate Dynamics

, Volume 26, Issue 5, pp 513–529

Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints

  • V. Masson-Delmotte
  • M. Kageyama
  • P. Braconnot
  • S. Charbit
  • G. Krinner
  • C. Ritz
  • E. Guilyardi
  • J. Jouzel
  • A. Abe-Ouchi
  • M. Crucifix
  • R. M. Gladstone
  • C. D. Hewitt
  • A. Kitoh
  • A. N. LeGrande
  • O. Marti
  • U. Merkel
  • T. Motoi
  • R. Ohgaito
  • B. Otto-Bliesner
  • W. R. Peltier
  • I. Ross
  • P. J. Valdes
  • G. Vettoretti
  • S. L. Weber
  • F. Wolk
  • Y. YU
Article

Abstract

Climate model simulations available from the PMIP1, PMIP2 and CMIP (IPCC-AR4) intercomparison projects for past and future climate change simulations are examined in terms of polar temperature changes in comparison to global temperature changes and with respect to pre-industrial reference simulations. For the mid-Holocene (MH, 6,000 years ago), the models are forced by changes in the Earth’s orbital parameters. The MH PMIP1 atmosphere-only simulations conducted with sea surface temperatures fixed to modern conditions show no MH consistent response for the poles, whereas the new PMIP2 coupled atmosphere–ocean climate models systematically simulate a significant MH warming both for Greenland (but smaller than ice-core based estimates) and Antarctica (consistent with the range of ice-core based range). In both PMIP1 and PMIP2, the MH annual mean changes in global temperature are negligible, consistent with the MH orbital forcing. The simulated last glacial maximum (LGM, 21,000 years ago) to pre-industrial change in global mean temperature ranges between 3 and 7°C in PMIP1 and PMIP2 model runs, similar to the range of temperature change expected from a quadrupling of atmospheric CO2 concentrations in the CMIP simulations. Both LGM and future climate simulations are associated with a polar amplification of climate change. The range of glacial polar amplification in Greenland is strongly dependent on the ice sheet elevation changes prescribed to the climate models. All PMIP2 simulations systematically underestimate the reconstructed glacial–interglacial Greenland temperature change, while some of the simulations do capture the reconstructed glacial–interglacial Antarctic temperature change. Uncertainties in the prescribed central ice cap elevation cannot account for the temperature change underestimation by climate models. The variety of climate model sensitivities enables the exploration of the relative changes in polar temperature with respect to changes in global temperatures. Simulated changes of polar temperatures are strongly related to changes in simulated global temperatures for both future and LGM climates, confirming that ice-core-based reconstructions provide quantitative insights on global climate changes.

References

  1. Alexeev VA et al (2005) Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim Dyn 24:655–666CrossRefGoogle Scholar
  2. Bengtsson L et al (2004) The early twentieth-century warming on the Arctic—a possible mechanism. J Clim 17:4045–4057CrossRefGoogle Scholar
  3. Berger AL (1978) Long-term variations of daily insolation and quaternary climatic change. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  4. Boyle EA (1997) Cool tropical temperatures shift the global δ18O-T relationship: an explanation for the ice core ?δ18O borehole thermometry conflict? Geophys Res Lett 24:273–276CrossRefGoogle Scholar
  5. Braconnot P et al (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys Res Lett 26:2481–2484CrossRefGoogle Scholar
  6. Cheddadi R et al (1997) The climate of Europe 6000 years ago. Clim Dyn 13:1–10CrossRefGoogle Scholar
  7. CLIMAP (1981) Seasonal reconstructions of the Earth’s surface at the last glacial maximum. Geol Soc Am Map and Chart Series, MC-36, 18 pGoogle Scholar
  8. Corell R et al (2004) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge, p 144Google Scholar
  9. Crowley TJ, SK Baum (1997) Effect of vegetation on an ice-age climate model simulation. J Geophys Res 102:16463–16480CrossRefGoogle Scholar
  10. Crucifix M, Hewitt CD (2005) Impact of vegetation changes on the dynamics of the atmosphere at the Last Glacial Maximum. Clim Dyn 25:447–459CrossRefGoogle Scholar
  11. Crucifix M et al (2002) Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Clim Dyn 19:43–60CrossRefGoogle Scholar
  12. Cuffey KM, Clow GD (1997) Temperature, accumulation, and elevation in central Greenland through the last deglacial transition. J Geophys Res 102:26383–26396CrossRefGoogle Scholar
  13. Cuffey KM et al (1995) Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270:455–458CrossRefGoogle Scholar
  14. Cuffey KM, Vimeux F (2001a) Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature 412(6846):523–527CrossRefGoogle Scholar
  15. Cuffey KM, Vimeux F (2001b) Covariation of carbon dioxyde and temperature from the Vostok ice core after deuterium-excess correction. Nature 421:523–527CrossRefGoogle Scholar
  16. Dahl-Jensen D et al (1998) Past temperatures directly from the Greenland ice sheet. Science 282:268–271CrossRefGoogle Scholar
  17. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  18. Dixon KW et al (2003) A comparison of climate change simulations produced by two GFDL coupled climate models. Global Planet Change 37:81–102CrossRefGoogle Scholar
  19. EPICA-community-members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  20. Genthon C et al (1987) Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. Nature 329:414–418CrossRefGoogle Scholar
  21. Gersonde R et al (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view based on siliceous microfossil records. Quaternary Sci Rev 24:869–896CrossRefGoogle Scholar
  22. Harrison SP et al (2002) Comparison of palaeoclimate simulations enhance confidence in models. EOS Trans 83:447–447Google Scholar
  23. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232CrossRefGoogle Scholar
  24. Huybrechts P et al (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global Planet Change 42:83–105CrossRefGoogle Scholar
  25. IPCC (2001) Climate change 2001: impacts, adaptation and vulnerability–contribution of working group II to the third assessment report of IPCC, Cambridge University Press, UK, p 1000Google Scholar
  26. Jacka TH, Budd WF (1998) Detection of temperature and sea-ice-extent changes in the Antarctic and Southern Ocean. Ann Glaciol 27:553–559Google Scholar
  27. Johnsen SJ et al (1997) The δ18O record along the Greenland ice core project deep ice core and the problem of possible Eemian climatic instability. J Geophys Res 102:26397–26410CrossRefGoogle Scholar
  28. Johnsen SJ et al (1995) Greenland palaeotemperatures derived from GRIP borehole temperature and ice core isotopic profiles. Tellus 47B:624–629Google Scholar
  29. Joussaume S, Braconnot P (1997) Sensitivity of paleoclimate simulation results to the definition of the season. J Geophys Res 102:1943–1956CrossRefGoogle Scholar
  30. Joussaume S, Taylor KE(1995) Status of the paleoclimate modeling intercomparison project (PMIP). In: Gates WL (ed) Proceedings of the first international AMIP scientific conference, Monterey, pp 425–430Google Scholar
  31. Joussaume S et al (1999) Monsoon changes for 6000 years ago: Results of 18 simulations from the paleoclimate modeling intercomparison project (PMIP). Geophys Res Lett 26:859–862CrossRefGoogle Scholar
  32. Jouzel J et al (2003) Magnitude of the isotope/temperature scaling for interpretation of central Antarctic ice cores. J Geophys Res 108:1029–1046CrossRefGoogle Scholar
  33. Knorr W et al (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301CrossRefGoogle Scholar
  34. Krabill W et al (2004) Greenland ice sheet: increased coastal thinning. Geophys Res Lett 31:L24402CrossRefGoogle Scholar
  35. Krinner G, Genthon C (1998) GCM simulations of the Last Glacial Maximum surface climate of Greenland and Antarctica. Clim Dyn 14:741–758CrossRefGoogle Scholar
  36. Krinner G, Genthon C (1999) Altitude dependence of the ice sheet surface climate. Geophys Res Lett 26:2227–2230CrossRefGoogle Scholar
  37. Krinner G et al (1997) GCM analysis of local influences on ice core δ signals. Geophys Res Lett 24:2825–2828CrossRefGoogle Scholar
  38. Krinner G, Werner M (2003) Impact of precipitation seasonality changes on isotopic signals in polar ice cores. Earth Planet Sci Lett 216:525–538CrossRefGoogle Scholar
  39. Lea DW (2004) The 100,000-Yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. J Clim 17:2170–2179CrossRefGoogle Scholar
  40. Lorius C et al (1990) Greenhouse warming, climate sensitivity and ice core data. Nature 347:139–145CrossRefGoogle Scholar
  41. Lorius C et al (1969) Variation in the mean deuterium content of precipitations in Antarctica. J Geophys Res 74:7027–7031CrossRefGoogle Scholar
  42. Manabe S, Broccoli A (1985) A comparison of climate model sensitivity with data from the last glacial maximum. J Atmos Sci 42:2643–2651CrossRefGoogle Scholar
  43. Masson-Delmotte V et al (2005a) Deuterium excess reveals millennial and orbital scale fluctuations of Greenland moisture origin. Science 309:118–121CrossRefGoogle Scholar
  44. Masson-Delmotte V et al (2005b) Holocene climatic changes in Greenland: different deuterium excess signals at GRIP and NorthGRIP. J Geophys Res 110, Art. No. D14102Google Scholar
  45. Masson V et al (1999) Mid-Holocene climate in Europe: what can we infer from PMIP model-data comparisons? Clim Dyn 15:163–182CrossRefGoogle Scholar
  46. Masson V et al (1998) Impact of parameterizations on simulated winter mid-Holocene and Last Glacial Maximum climatic changes in the Northern Hemisphere. J Geophys Res 103:8935–8943CrossRefGoogle Scholar
  47. Masson V et al (2000), Holocene climate variability in Antarctica based on 11 ice cores isotopic records. Quaternary Res 54:348–358CrossRefGoogle Scholar
  48. Moritz RE, et al. (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502CrossRefGoogle Scholar
  49. NorthGRIP-community-members (2004) High resolution climate record of the northern hemisphere reaching into last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  50. Ohmura A, Reeh N (1991) New precipitation and accumulation maps for Greenland. J Glaciol 37:140–148Google Scholar
  51. Parrenin F et al (2001) Dating of the Vostok ice core by an inverse method. J Geophys Res 106:31837–31851CrossRefGoogle Scholar
  52. Peltier WR (1994) Ice age paleotopography. Science 265:195–201CrossRefGoogle Scholar
  53. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  54. Petit JR et al. (1999) Climate and atmospheric history of the past 420000 years from the Vostok Ice Core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  55. Polyakov IV et al (2002) Observationally based assessment of polar amplification of global warming. Geophys Res Lett 29(18):1878CrossRefGoogle Scholar
  56. Poutou E (2003) Etude numérique du rôle des interactions entre la surface et l’atmosphère dans le cadre d’un changement climatique aux hautes latitudes nord, Grenoble, p 318Google Scholar
  57. Raynaud D et al (1997) Air content along the GRIP core: a record of surface climatic parameters and elevation in Central Greeland. J Geophys Res 102:26607–26613CrossRefGoogle Scholar
  58. Renssen H et al (2005a) Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model. Clim Dyn 24:23–43CrossRefGoogle Scholar
  59. Renssen H et al (2005b) The Holocene climate evolution in the high latitude southern hemisphere simulated by a coupled atmosphere sea ice ocean vegetation model. Holocene (in press)Google Scholar
  60. Rignot E, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1502–1506CrossRefGoogle Scholar
  61. Rind D et al (1997) The role of sea-ice in 2×CO2 climate model sensitivity. 2. Hemispheric dependencies. Geophys Res Lett 24:1491–1494CrossRefGoogle Scholar
  62. Ritz C et al (2001) Modeling the evolution of Antarctic ice sheet over the last 420000 years: implications for altitude changes in the Vostok region. J Geophys Res 106(D23):31943–31964CrossRefGoogle Scholar
  63. Steig E et al (1998) Synchronous climate changes in Antarctica and the North Atlantic. Science 282:92–95CrossRefGoogle Scholar
  64. Stenni B et al (2003) A high resolution site and source late glacial temperature record derived from the EPICA Dome C isotope records (East Antarctica). EPSL 217:183–195CrossRefGoogle Scholar
  65. Stenni B et al (2001) An oceanic cold reversal during the last deglaciation. Science 293:2074–2077CrossRefGoogle Scholar
  66. Tarasov L, Peltier WR (2003) Greenland glacial history, borehole contraints and Eemian extent. J Geophys Res 108. DOI 10 1029/2001JB001731Google Scholar
  67. Vaughan DG et al (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274CrossRefGoogle Scholar
  68. Vavrus S, Harrison SP (2003) The impact of sea ice dynamics on the Arctic climate system. Clim Dyn 20:741–757Google Scholar
  69. Watanabe et al (2003) A first comparison of the Dome Fuji and Vostok isotopic climate records. Memoirs of the National Institute for Polar Research, Tokyo, JapanGoogle Scholar
  70. Werner M et al (2001) Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus 53B:53–71Google Scholar
  71. Werner M, Tegen I, Harrison SP, Kohfeld KE, Colin IC, Balkanski Y, Rodhe H, Roelandt C (2002) Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. J Geophys Res 107. DOI10.1029/2002JD002365Google Scholar
  72. Werner M et al (2000) Borehole versus isotope temperatures on Greenland: Seasonality does matter. Geophys Res Lett 27:723–726CrossRefGoogle Scholar
  73. Wohlfahrt J et al (2004) Synergetic feedbacks between ocean and vegetation on mid- and high- latitude climates during the mid-Holocene. Clim Dyn 22:223–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • V. Masson-Delmotte
    • 1
  • M. Kageyama
    • 1
  • P. Braconnot
    • 1
  • S. Charbit
    • 1
  • G. Krinner
    • 2
  • C. Ritz
    • 2
  • E. Guilyardi
    • 1
  • J. Jouzel
    • 1
  • A. Abe-Ouchi
    • 3
    • 9
  • M. Crucifix
    • 4
  • R. M. Gladstone
    • 5
  • C. D. Hewitt
    • 4
  • A. Kitoh
    • 6
  • A. N. LeGrande
    • 7
  • O. Marti
    • 1
  • U. Merkel
    • 8
  • T. Motoi
    • 6
  • R. Ohgaito
    • 9
  • B. Otto-Bliesner
    • 10
  • W. R. Peltier
    • 11
  • I. Ross
    • 5
  • P. J. Valdes
    • 5
  • G. Vettoretti
    • 11
  • S. L. Weber
    • 12
  • F. Wolk
    • 13
  • Y. YU
    • 14
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement(LSCE/IPSL, UMR CEA-CNRS 1572) L’Orme des MerisiersGif-sur-Yvette CedexFrance
  2. 2.Laboratoire de Glaciologie et de Géophysique de l’Environnement(UMR 5183 CNRS-UJF)St Martin d’HèresFrance
  3. 3.Center for Climate System ResearchThe University of TokyoKashiwaJapan
  4. 4.Hadley Centre for Climate Prediction and ResearchMet OfficeDevonUK
  5. 5.School of Geographical SciencesUniversity of BristolBristolUK
  6. 6.Climate Research DepartmentMeteorological Research Institute IbarakiJapan
  7. 7.NASA Goddard Institute for Space Studies and Center for Climate Systems ResearchColumbia UniversityNew YorkUSA
  8. 8.IFM-GEOMARKielGermany
  9. 9.Frontier Research Center for Global Change (FRCGC)JAMSTECYokohama CityJapan
  10. 10.Climate Change ResearchNational Center for Atmospheric ResearchBoulderUSA
  11. 11.Department of PhysicsUniversity of TorontoTorontoCanada
  12. 12.Climate Variability ResearchRoyal Netherlands Meteorological Institute (KNMI) De BiltThe Netherlands
  13. 13.Institut d’Astronomie et de Géophysique G. LemaîtreUniversité catholique de LouvainLouvain-la-NeuveBelgium
  14. 14.LASG, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople's Republic of China

Personalised recommendations