Climate Dynamics

, Volume 25, Issue 7–8, pp 851–868

The stratospheric version of LMDz: dynamical climatologies, arctic oscillation, and impact on the surface climate

  • François Lott
  • Laurent Fairhead
  • Frederic Hourdin
  • Phu Levan


A climatology of the stratosphere is determined from a 20-year integration with the stratospheric version of the Atmospheric General Circulation Model LMDz. The model has an upper boundary at near 65 km, uses a Doppler spread non-orographic gravity waves drag parameterization and a subgrid-scale orography parameterization. It also has a Rayleigh damping layer for resolved waves only (not the zonal mean flow) over the top 5 km. This paper describes the basic features of the model and some aspects of its radiative-dynamical climatology. Standard first order diagnostics are presented but some emphasis is given to the model’s ability to reproduce the low frequency variability of the stratosphere in the winter northern hemisphere. In this model, the stratospheric variability is dominated at each altitudes by patterns which have some similarities with the arctic oscillation (AO). For those patterns, the signal sometimes descends from the stratosphere to the troposphere. In an experiment where the parameterized orographic gravity waves that reach the stratosphere are exaggerated, the model stratosphere in the NH presents much less variability. Although the stratospheric variability is still dominated by patterns that resemble to the AO, the downward influence of the stratosphere along these patterns is near entirely lost. In the same time, the persistence of the surface AO decreases, which is consistent with the picture that this persistence is linked to the descent of the AO signal from the stratosphere to the troposphere. A comparison between the stratospheric version of the model, and its routinely used tropospheric version is also done. It shows that the introduction of the stratosphere in a model that already has a realistic AO persistence can lead to overestimate the actual influence of the stratospheric dynamics onto the surface AO. Although this result is certainly model dependent, it suggests that the introduction of the stratosphere in a GCM also call for a new adjustment of the model parameters that affect the tropospheric variability.


  1. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, 489ppGoogle Scholar
  2. Baldwin MP, Dunkerton TJ (1999) Propagation of the arctic oscillation from the stratosphere to the troposphere. J Geophys Res 104: 30,937–30,946CrossRefGoogle Scholar
  3. Beagley SR, de Grandpré J, Koshyk JN, McFarlane NA, Shepherd TG (1997) Radiative dynamical climatology of the first generation Canadian middle atmosphere model. Atmosphere-Ocean 35:293–331Google Scholar
  4. Blackmon ML (1976) A climatological study of the 500 mb geopotential height of the northern hemisphere. J Atmos Sci 33:1607–1623CrossRefGoogle Scholar
  5. Bony S, Dufresne J-L, LeTreut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dynam 22:71–86CrossRefGoogle Scholar
  6. Boville BA (1984) The influence of the polar night jet on the tropospheric circulation in a GCM. J Atmos Sci 41:1132–1142CrossRefGoogle Scholar
  7. Boville BA (1995) Middle atmosphere version of CCM2 (MACCM2): annual cycle and interannual variability. J Geophys Res 100:9017–9039CrossRefGoogle Scholar
  8. Butchart N, Austin J (1998) Middle atmosphere climatogies from the troposphere-stratosphere configuration of the UKMO’s Unified Model. J Atmos Sci 55:2782–2809CrossRefGoogle Scholar
  9. Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109Google Scholar
  10. Christiansen B (2001) Downward propagation of zonal mean wind anomalies from the stratosphere to the troposphere: model and reanalysis. J Geophys Res 106:27,307–27,322CrossRefGoogle Scholar
  11. Déqué M, Dreverton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dynam 10:249–266CrossRefGoogle Scholar
  12. Fels SB, Mahlman JD, Scharkopf MD, Sinclait RW (1980) Stratospheric sensitivity to perturbations in ozone and carbon dioxide. J Atmos Sci 37:2265–2297CrossRefGoogle Scholar
  13. Fleming EL, Chandra S, Barnett JJ, Corney M (1990) Zonal mean temperature, pressure, zonal wind and geopotential height as a function of latitude. Adv Spa Res 10(12):11–59CrossRefGoogle Scholar
  14. Fortuin JPF, Kelder H (1998) An ozone climatology base on ozonesonde and satellite measurements. J Geophys Res 103:31,709–31,734CrossRefGoogle Scholar
  15. Hamilton K, Wilson RJ, Mahlman JD, Umscheid LF (1995) Climatology of the SKYHI troposphere-stratosphere-meseophere general circulation model. J Atmos Sci 52:5–43CrossRefGoogle Scholar
  16. Hauglustaine DA, Hourdin F, Jourdain L, Filiberti M-A, Walters S, Lamarque J-F, Holland EA (2004) Interactive chemistry in the laboratoire de meteorologie dynamique general circulation model: description and background tropospheric chemistry evaluation. J Geophys Res 109(D4):4314CrossRefGoogle Scholar
  17. Hines CO (1997a) Doppler spread parameterization of gravity wave momentum deposit in the middle atmosphere. Part I: basic formulation. J Atmos Solar Terr Phys 59:371–386CrossRefGoogle Scholar
  18. Hines CO (1997b) Doppler spread parameterization of gravity wave momentum deposit in the middle atmosphere. Part II: broad and quasi monochromatic spectra and implementation. J Atmos Solar Terr Phys 59:387–400CrossRefGoogle Scholar
  19. Hoskins B J, Hsu HH, James IN, Masutani M, Sardeshmuck PD, White GH (1989) Diagnostics of the global atmospheric circulation based on ECMWF analysis 1979—1989. WCRP/WMO technical document 326:217Google Scholar
  20. Hourdin F, Couvreux F, Menut L (2002) Parameterisation of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59:1105–1123CrossRefGoogle Scholar
  21. Krinner G, Genthon C (2003) Tropospheric transport of continental tracers towards Antarctica under varying climatic conditions. Tellus 53:54–70Google Scholar
  22. Langematz U, Pawson S (1997) The Berlin troposphere-stratosphere-mesosphere GCM: climatology and forcing mechanisms, Q J R Meteor Soc 123:1075–1096CrossRefGoogle Scholar
  23. Li L (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Climate 12:986–1001CrossRefGoogle Scholar
  24. Lott F (1999) Alleviation of stationary biases in a GCM through a mountain drag parametrization scheme and a simple representation of mountain lift forces. Mon Weather Rev 127:788–801CrossRefGoogle Scholar
  25. Lott F, Miller M (1997) A new subgrid scale orographic drag parameterization; its testing in the ECMWF model. Q J R Meteor Soc 123:101–127CrossRefGoogle Scholar
  26. Manzini E, McFarlane NA (1998) The effect of varying the source spectrum of a gravity wave parameterization in a middle atmosphere general circulation model. J Geophys Res 103:31,523–31,539CrossRefGoogle Scholar
  27. Manzini E, McFarlane NA, McLandress C (1997) Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J Geophys Res 102:25,751–25,762CrossRefGoogle Scholar
  28. Morcrette JJ (1991) Radiation and cloud radiative properties in the European center for medium range weather forecasting system. J Geophys Res 96:9121–9132CrossRefGoogle Scholar
  29. Norton WA (2003) Sensitivity of northern hemisphere surface climate to simulation of the stratospheric polar vortex. Geophys Res Lett 30:1627. DOI 10.1029/2003GL0116958Google Scholar
  30. Pawson S, Coauthors (2000) The GCM-reality intercomparison for SPARC (GRIPS): scientific issues and initial results. Bull Amer Meteor Soc 81:781–796CrossRefGoogle Scholar
  31. Perlwitz J, Harnick N (2003) Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J Clim 16:3011–3026CrossRefGoogle Scholar
  32. Polvani LM, Kushner PJ (2002) Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys Res Lett 29:1114. DOI 10.1029/2001GL014284Google Scholar
  33. Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier Science, New-York, pp 425Google Scholar
  34. Quaas J, Boucher O, Bréon F-M (2004) Aerosol indirect effects in polder satellite data and the laboratoire de meteorologie dynamique-zoom (lmdz) general circulation model. J Geophys Res 109:D08205. DOI 10.1029/2003JD004317Google Scholar
  35. Reddy MS, Boucher O (2004) A study of the global cycle of carbonaceous aerosols in the lmdzt general circulation model, J Geophys Res 109:D14202. DOI 10.1029/2003JD004048Google Scholar
  36. Rind D, Scuozzo R, Balachandran NK, Lacis A, Russel G (1988) The GISS global climate-middle atmosphere model. Part 1: model structure and climatology. J Atmos Sci 45:329–370CrossRefGoogle Scholar
  37. Sadourny R (1975) The dynamics of finite difference models of the shallow water equations. J Atmos Sci 32:680–689CrossRefGoogle Scholar
  38. Sawyer JS (1976) Observational characteristics of atmospheric fluctuations with a time scale of a month. Q J R Meteorol Soc 96:610–625CrossRefGoogle Scholar
  39. Shepherd TG, Semeniuk K, Koshyk JN (1996) Sponge layer feedbacks in middle atmosphere models. J Geophys Res 101:23,447–23,464CrossRefGoogle Scholar
  40. Simmons AJ, Gibson JK (2000) The ERA-40 project plan. ERA-40 Project Report Series 1:63pGoogle Scholar
  41. Song Y, Robinson WA (2004) Dynamical mechanisms for stratospheric influences on the troposphere. J Atmos Sci 61:1711–1725CrossRefGoogle Scholar
  42. Thomson DW, Wallace JM (1998) The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  43. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • François Lott
    • 1
  • Laurent Fairhead
    • 2
  • Frederic Hourdin
    • 2
  • Phu Levan
    • 1
  1. 1.Laboratoire de Météorologie Dynamique, IPSLEcole Normale SupérieureParisFrance
  2. 2.Laboratoire de Météorologie Dynamique, IPSLUniversité Pierre et Marie CurieParisFrance

Personalised recommendations