Climate Dynamics

, Volume 25, Issue 6, pp 639–652

Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEP–NCAR and ECMWF reanalyses

  • Alessandro Dell’Aquila
  • Valerio Lucarini
  • Paolo M. Ruti
  • Sandro Calmanti
Article

Abstract

We compare 45 years of the reanalyses of National Center for Environmental Prediction–National Center for Atmospheric Research and European Center for Mid-Range Weather Forecast in terms of their representation of the mid-latitude winter atmospheric variability for the overlapping time frame 1957–2002. We adopt the classical approach of computing the Hayashi spectra of the 500 hPa geopotential height fields and we introduce an ad hoc integral measure of the variability observed in the Northern Hemisphere on different spectral subdomains. Discrepancies are found especially in the pre-satellite years of the records in the high frequency-high wavenumber propagating waves. This implies that in the pre-satellite period the two datasets have a different representation of the baroclinic available energy conversion processes. Minor differences are also found in the description of low frequency–low wavenumber standing waves. We observe a positive impact of the satellite data on the representation of wave activity over the oceanic sectors in the period starting from 1979, in particular on the description of high frequency variability. Since in the pre-satellite period the assimilated data are more scarce, predominately over the oceans, and of lower quality than found later on, they provide a weaker constraint to the model dynamics. Therefore, the resulting discrepancies in the reanalysis products may be mainly attributed to differences in the models’ behaviour.

References

  1. Andersson E, Haseler J, Undén P, Courtier P, Kelly G, Vasiljevic D, Brancovic C, Cardinali C, Gaffard C, Hollingsworth A, Jakob C, Janssen P, Klinker E, Lanzinger A, Miller M, Rabier F, Simmons A, Strauss B, Thépaut JN, Viterbo P (1998) The ECMWF implementation of three-dimensional variational assimilation (3D-Var). Part III: experimental results. Q J R Meteorol Soc 124:1831–1860CrossRefGoogle Scholar
  2. Barry L, Craig GC, Thuburn J (2000) A GCM investigation into the nature of baroclinic adjustment. J Atmos Sci 57:1141–1155CrossRefGoogle Scholar
  3. Bengtsson L, Hagemann S, Hodges KI (2004a) Can climate trends be calculated from reanalysis data? J Geophys Res 109:D11111. 10.1029/2004JD004536Google Scholar
  4. Bengtsson L, Hodges KI, Hagemann S (2004b) Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations. Tellus 56A:456–471CrossRefGoogle Scholar
  5. Benzi R, Speranza A (1989) Statistical properties of low frequency variability in the Northern Hemisphere. J Clim 2:367–379CrossRefGoogle Scholar
  6. Benzi R, Malguzzi P, Speranza A Sutera A (1986) The statistical properties of general atmospheric circulation: observational evidence and a minimal theory of bimodality. Q J Roy Met Soc 112:661–674CrossRefGoogle Scholar
  7. Blackmon ML (1976) A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J Atmos Sci 33:1607–1623CrossRefGoogle Scholar
  8. Blackmon ML, Wallace JM, Lau NC, Mullen SL (1977) An observational study of the Northern Hemisphere wintertime circulation. J Atmos Sci 34:1040–1053CrossRefGoogle Scholar
  9. Brankovic C, Molteni F (2004) Seasonal climate and variability of the ECMWF ERA-40 model. Clim Dyn 22:139–155CrossRefGoogle Scholar
  10. Buzzi A, Trevisan A, Speranza A (1984) Instabilities of a baroclinic flow related to topographic forcing. J Atmos Sci 41:637–650CrossRefGoogle Scholar
  11. Caires S, Sterl A, Bidlot JR, Graham A, Swail V (2004) Intercomparison of different wind wave reanalyses. J Clim 17:1893–1913CrossRefGoogle Scholar
  12. Charney JG, DeVore JG (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36:1205–1216CrossRefGoogle Scholar
  13. Charney JG, Straus DM (1980) Form-drag instability, multiple equilibria and propagating planetary waves in the baroclinic, orographically forced, planetary wave system. J Atmos Sci 37:1157–1176CrossRefGoogle Scholar
  14. Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120:1367–1388CrossRefGoogle Scholar
  15. Courtier P, Andersson E, Heckley W, Pailleux J, Vasiljevic D, Hamrud M, Hollingsworth A, Rabier F, Fisher M (1998) The ECMWF implementation of three dimensional variational assimilation (3D-Var). I: Formulation. Q J R Meteorol Soc 124:1783–1807CrossRefGoogle Scholar
  16. Dell’Aquila A (2004) Midlatitude winter tropopause: the observed state and a theory of baroclinic adjustment. PhD Thesis University of Genoa, pp 100Google Scholar
  17. Dickson R, Lazier J, Meinke P, Rhines P, Swift J (1996) Long term coordinated changes in the convective activity of the North Atlantic. Progr Oceanogr 38:241–295CrossRefGoogle Scholar
  18. Fraedrich K, Bottger H (1978) A wavenumber frequency analysis of the 500 mb geopotential at 50°N. J Atmos Sci 35:745–750CrossRefGoogle Scholar
  19. Hansen AR (1986) Observational characteristics of atmospheric planetary waves with bimodal amplitude distribution. Adv Geophys 29:101–132CrossRefGoogle Scholar
  20. Hansen AR, Sutera A, Venne DE (1989) An examination of midlatitude power spectra: evidence for standing variance and the signature of El Nino. Tellus 41A:371–384Google Scholar
  21. Hayashi Y (1971) A generalized method for resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analysis. J Meteorol Soc Jpn 49:125–128Google Scholar
  22. Hayashi Y (1979) A generalized method for resolving transient disturbances into standing and travelling waves by space–time spectral analysis. J Atmos Sci 36:1017–1029CrossRefGoogle Scholar
  23. Hodges KI, Hoskins BJ, Boyle J, Thorncroft C (2003) A comparison of recent reanalysis datasets using objective feature tracking: storm tracks and tropical easterly waves. Mon Weather Rev 131:2012–2037CrossRefGoogle Scholar
  24. Holton JR (1992) An introduction to dynamic meteorology. Academic, Boston, p 497Google Scholar
  25. Janssen P, Bidlot JR (2003) Part VII: ECMWF wave-model documentation. IFS documentation cycle CY23r4, p 48Google Scholar
  26. Jenne R (1999) Global observations for reanalysis, 1948-on. In: Proceedings of the 2nd WCRP international conference on reanalysis. WCRP report 109Google Scholar
  27. Jung T, Tompkins A, Rodwell M (2004) Systematic errors in the ECMWF forecasting system. ECMWF Newsl 100:14–24Google Scholar
  28. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  29. Kanamitsu M et al (1991) Recent changes implemented into the global forecast system at NMC. Wea Forecasting 6:425–435CrossRefGoogle Scholar
  30. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  31. Parrish DF, Derber JC (1992) The National Meteorological Center’s Spectral Statistical-Interpolation Analysis System. Mon Weather Rev 120:1747–1763CrossRefGoogle Scholar
  32. Pratt RW (1976) The interpretation of space–time spectral quantities. J Atmos Sci 33:1060–1066CrossRefGoogle Scholar
  33. Rabier F, McNally A, Andersson E, Courtier P, Undén P, Eyre J, Hollingsworth A, Bouttier F (1998) The ECMWF implementation of three dimensional variational assimilation (3D-Var). II: Structure functions. Q J R Meteorol Soc 124:1809–1829CrossRefGoogle Scholar
  34. Ruiz-Barradas A, Nigam S (2004) Warm-season rainfall variability over the US Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J Clim (in press)Google Scholar
  35. Savijarvi H (1978) The interaction of the monthly mean flow and large-scale, transient eddies in two different circulation types. Part II: vorticity and temperature balance. Geophysica 14:207–229Google Scholar
  36. Simmons AJ, Gibson JK (2000) The ERA-40 Project Plan, ERA-40 project report series no. 1 ECMWF, p 62Google Scholar
  37. Speranza A (1983) Deterministic and statistical properties of the westerlies. Paleogeophysics 121:511–562Google Scholar
  38. Sterl A (2004) On the (in-)homogeneity of reanalysis products. J Clim 17:3866–3873CrossRefGoogle Scholar
  39. Sturaro G (2003) A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data. Clim Dyn 21:309–316CrossRefGoogle Scholar
  40. Tibaldi S (1986) Envelope orography and maintenance of the quasi-stationary circulation in the ECMWF global models. Adv Geophys 29:227–249Google Scholar
  41. Uppala S, Kållberg P, Hernandez A, Saarinen S, Fiorino M, Li X, Onogi K, Sokka N, Andrae U, Da Costa Bechtold V (2004) ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2002. ECMWF Newsl 101:2–21Google Scholar
  42. Wallace JM, Tibaldi S, Simmons A (1983) Reduction of systematic forecast-error in the ECMWF model through the introduction of an envelope orography. Q J R Meteorol Soc 109:683–717CrossRefGoogle Scholar
  43. Wallace JM, Lim GH, Blackmon ML (1988) Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J Atmos Sci 45:439–462CrossRefGoogle Scholar
  44. Weeks ER, Tian Y, Urbach JS, Ide K, Swinney HL, Ghil M (1997) Transitions between blocked and zonal flows in a rotating annulus with topography. Science 278:1598–1601CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Alessandro Dell’Aquila
    • 1
  • Valerio Lucarini
    • 2
  • Paolo M. Ruti
    • 1
  • Sandro Calmanti
    • 1
  1. 1.Progetto Speciale Clima GlobaleEnte Nazionale per le Nuove TecnologieRomeItaly
  2. 2.Dipartimento di Matematica ed InformaticaUniversità di CamerinoCamerino (MC)Italy

Personalised recommendations