Climate Dynamics

, Volume 25, Issue 4, pp 363–385 | Cite as

EMIC Intercomparison Project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling

  • V. PetoukhovEmail author
  • M. Claussen
  • A. Berger
  • M. Crucifix
  • M. Eby
  • A. V. Eliseev
  • T. Fichefet
  • A. Ganopolski
  • H. Goosse
  • I. Kamenkovich
  • I. I. Mokhov
  • M. Montoya
  • L. A. Mysak
  • A. Sokolov
  • P. Stone
  • Z. Wang
  • A. J. Weaver


An intercomparison of eight EMICs (Earth system Models of Intermediate Complexity) is carried out to investigate the variation and scatter in the results of simulating (1) the climate characteristics at the prescribed 280 ppm atmosphere CO2 concentration, and (2) the equilibrium and transient responses to CO2 doubling in the atmosphere. The results of the first part of this intercomparison suggest that EMICs are in reasonable agreement with the present-day observational data. The dispersion of the EMIC results by and large falls within the range of results of General Circulation Models (GCMs), which took part in the Atmospheric Model Intercomparison Project (AMIP) and Coupled Model Intercomparison Project, phase 1 (CMIP1). Probable reasons for the observed discrepancies among the EMIC simulations of climate characteristics are analysed. A scenario with gradual increase in CO2 concentration in the atmosphere (1% per year compounded) during the first 70 years followed by a stabilisation at the 560 ppm level during a period longer than 1,500 years is chosen for the second part of this intercomparison. It appears that the EMIC results for the equilibrium and transient responses to CO2 doubling are within the range of the corresponding results of GCMs, which participated in the atmosphere-slab ocean model intercomparison project and Coupled Model Intercomparison Project, phase 2 (CMIP2). In particular EMICs show similar temperature and precipitation changes with comparable magnitudes and scatter across the models as found in the GCMs. The largest scatter in the simulated response of precipitation to CO2 change occurs in the subtropics. Significant differences also appear in the magnitude of sea ice cover reduction. Each of the EMICs participating in the intercomparison exhibits a reduction of the strength of the thermohaline circulation in the North Atlantic under CO2 doubling, with the maximum decrease occurring between 100 and 300 years after the beginning of the transient experiment. After this transient reduction, whose minimum notably varies from model to model, the strength of the thermohaline circulation increases again in each model, slowly rising back to a new equilibrium.


Outgoing Longwave Radiation Meridional Circulation Latitudinal Distribution Atmospheric Model Intercomparison Project Total Cloud Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The contributions of L.A. Mysak and Z. Wang to this paper were supported by the Canadian Natural Sciences and Engineering Research Council and Canadian Foundation for Climate and Atmospheric Sciences. T. Fichefet and H. Goosse are research associates with the Belgian National Fund for Scientific Research. A.J. Weaver and M. Eby received funding from the Canadian Natural Sciences and Engineering Research Council and Canadian Foundation for Climate and Atmospheric Sciences. I.I. Mokhov and A.V. Eliseev are supported by the Russian Foundation for Basic Research (grants 05-05-64907, 05-05-65034 and 05-05-65167) and the Russian President Scientific Program (grants 1636.2003.5 and 3570.2004.5). M.Montoya is funded by the Spanish Ministry for Science and Education through the Ramón y Cajal programme. The authors are indebted to the anonymous reviewers for their constructive comments.


  1. Alcamo J, Kreileman GJJ, Leemans R (eds) (1996) Integrated scenarios of global change: results from the IMAGE 2.1 model. Spec Iss Global Environ Change 6(4):255–394Google Scholar
  2. Berlyand TG, Strokina LA (1980) Global distribution of total cloudiness. Gidrometeoizdat Leningrad, 71 ppGoogle Scholar
  3. Brovkin V, Ganopolski A, Svirezhev Y (1997) A continuous climate-vegetation classification for use in climate-biosphere studies. Eco Model 101:251–261CrossRefGoogle Scholar
  4. Campbell GG, Vonder Haar TH (1980) Climatology of radiation budget measurements from satellites. Atm Sci Paper No 323, Dept Atmos Sci Colorado State University: 74 ppGoogle Scholar
  5. Cess RD, Zhang MH, Potter GL, Barker HW, Colman RA, Dazlich DA, Delegenio AD, Esch M, Fraser JR, Galin V, Gates WL, Hack JJ, Ingram WJ, Kiehl JT, Lacis AA, Letreut H, Li ZX, Liang XZ, Mahfouf JF, McAvaney BJ, Meleshko VP, Morcrette JJ, Randall DA, Roeckner E, Royer JF, Sokolov AP, Sporyshev PV, Taylor KE, Wang WC, Wetherald RT (1993) Uncertainties in carbon dioxide radiative forcing in Atmospheric General Circulation Models. Science 262:1252–1255CrossRefGoogle Scholar
  6. Chalikov DV, Verbitsky MYa (1984) A new Earth climate model. Nature 308:609–612CrossRefGoogle Scholar
  7. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M-F, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586CrossRefGoogle Scholar
  8. Colman R, Fraser J, Rotstayn L (2001) Climate feedbacks in a general circulation model incorporating prognostic clouds. Clim Dyn 17:103–122CrossRefGoogle Scholar
  9. Covey C, Abe-Ouchi A, Boer GJ, Boville BA, Cubasch U, Fairhead L, Flato GM, Gordon H, Guilyardi E, Jiang X, Johns TC, Le Treut H, Madec G, Meehl GA, Miller R, Noda A, Power SB, Roeckner E, Russel G, Schneider EK, Stouffer RJ, Terray L, von Storch J-S (2000) The seasonal cycle in coupled ocean-atmosphere general circulation models. Clim Dyn 16:775–787CrossRefGoogle Scholar
  10. Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the Coupled Model Intercomparison Project. Global Planet Change 37:103–133CrossRefGoogle Scholar
  11. Cox PM (2001) Description of "TRIFFID" Dynamical Global Vegetation Model. Hadley Centre Techn Note HCTN24, Exeter, UKGoogle Scholar
  12. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187CrossRefPubMedGoogle Scholar
  13. Crucifix M, Loutre MF, Tulkens P, Fichefet T, Berger A (2002) Climate evolution during the Holocene: a study with an Earth system model of intermediate complexity. Clim Dyn 19:43–60CrossRefGoogle Scholar
  14. Demchenko PF, Velichko AA, Eliseev AV, Mokhov II, Nechaev VP (2002) Dependence of permafrost conditions on global warming: comparison of models, scenarios, and paleoclimatic reconstructions. Izvestiya, Atmos Ocean Phys 38(2):143–151Google Scholar
  15. Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR/TN-275+STR, NCAR Boulder, Colorado: 69 ppGoogle Scholar
  16. Dickson RR, Brown J (1994) The production of North Atlantic deep water: sources, rates and pathways. J Geophys Res 99(C6):12319–12341CrossRefGoogle Scholar
  17. Dobrolyubov SA (1991) Estimate of the freshwater component of meridional water transport in the ocean. Meteorol Gidrol 1:71–78Google Scholar
  18. Eliseev AV, Mokhov II (2003) Amplitude-phase characteristics of the annual cycle of surface air temperature in the Northern Hemisphere. Adv Atmos Sci 20(1):1–16Google Scholar
  19. England MH (1993) Representing the global-scale water masses in ocean general circulation models. J Phys Oceanogr 23:1523–1552CrossRefGoogle Scholar
  20. Ewen TL, Weaver AJ, Eby M (2004) Sensitivity of the inorganic ocean carbon cycle to future warming in the UVic coupled model. Atmos Ocean 42:23–42CrossRefGoogle Scholar
  21. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609–12646CrossRefGoogle Scholar
  22. Fiorino M (1997) A merged surface air temperature data set for the validation of AMIP I. PCMDI Web Rep, Lawrence Livermore National Laboratory [Available online at ]
  23. Gallée H, van Ypersele JP, Fichefet Th, Tricot Ch, Berger A (1991) Simulation of the Last Glacial Cycle be a Coupled, Sectorially Averaged Climate-Ice Sheet Model 1. The Climate Model. J Geophys Res 96(D7):13139–13161Google Scholar
  24. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457CrossRefPubMedGoogle Scholar
  25. Ganopolski AV, Rahmstorf S, Petoukhov VK, Claussen M (1998) Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391:351–356CrossRefGoogle Scholar
  26. Ganopolski A, Petoukhov V, Rahmstorf S, Brovkin V, Claussen M, Eliseev A, Kubatzki C (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: Model sensitivity. Clim Dyn 17:735–751CrossRefGoogle Scholar
  27. Gates WL, Mitchell JFB, Boer GJ, Cubasch U, Meleshko VP (1992) Climate modelling, climate prediction and model validation. In: Houghton JT, Callander BA, Varney SK (eds) Climate change. The supplementary report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge, UK, pp 97–134Google Scholar
  28. Gates WL, Boyle JS, Covey C, Dease CG, Doutriaux CM, Drach RS, Fiorino M, Gleckler PJ, Hnilo JJ, Marlais SM, Phillips TJ, Potter GL, Santer BD, Sperber KR, Taylor KE, Williams DN (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull Amer Meteor Soc 80 (1):29–55CrossRefGoogle Scholar
  29. Goody RM (1964) Atmospheric radiation. I: Theoretical basis. Clarendon Press, Oxford, 436 ppGoogle Scholar
  30. Goosse H, Renssen H (2001) A two-phase response of the Southern Ocean to an increase in greenhouse gas concentrations. Geophys Res Let 28(18):3469–3472CrossRefGoogle Scholar
  31. Goosse H, Selten FM, Haarsma RJ, Opsteegh JD (2001) Decadal variability in high northern latitudes as simulted by an intermediate-complexity climate model. Ann Glaciol 33:525–532CrossRefGoogle Scholar
  32. Harrison EP, Minnis P, Barkstrom BP, Ramanathan V, Cess RD, Gibson GG (1990) Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J Geophys Res 95:18687–18703Google Scholar
  33. Harvey LDD (1992) A Two-Dimensional Ocean Model for long-term climate simulations: stability and coupling to Atmospheric Sea Ice Models. J Geophys Res 97(C6):9435–9453Google Scholar
  34. Hastenrath S (1982) On meridional heat transport in the world ocean. J Phys Oceanogr 12:922–927CrossRefGoogle Scholar
  35. Holfort J (1994) Grossrämige Zirkulation und meridionale Transporte im Südatlantik. PhD Dissertation, Institut für Meereskunde, Kiel, GermanyGoogle Scholar
  36. Hsiung J (1985) Estimates of global oceanic meridional heat transport. J Phys Oceanogr 15:1405–1413CrossRefGoogle Scholar
  37. Hurrel JW, Campbell GG (1992) Monthly mean global satellite data sets available in CCM history tape format. NCAR Tech Note NCAR/TN-371+STR: 94 ppGoogle Scholar
  38. IPCC (1990) Climate change: the IPCC scientific assessment. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Cambridge University Press, Cambridge, 365 ppGoogle Scholar
  39. IPCC (1995) Climate Change 1995: the Science of climate change. In: Houghton JT, Meira Filho LG, Callender BA, Harris N, Kattenberg A, Maskel K (eds) Cambridge University Press, Cambridge, 572 ppGoogle Scholar
  40. IPCC (2001) Climate change 2001: the Scientific Basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New Jork, NY, USA, 881 ppGoogle Scholar
  41. Jäger L (1976) Monatskarten des Niederschlags für die ganze Erde. Ber Deutsche Wetterdienstes 18(139):38Google Scholar
  42. Jennings RL (1975) Data sets for meteorological research. NCAR Technical Note, NCAR-TN/1A, Narional Center for Atmospheric Research, Boulder, 156 ppGoogle Scholar
  43. Jones PD (1988) Hemispheric surface air temperature variations: recent trends and an update to 1987. J Climate 1:654–660CrossRefGoogle Scholar
  44. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredel M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Met Soc 77:437–471CrossRefGoogle Scholar
  45. Kamenkovich I, Sokolov A, Stone P (2002) An efficient climate model with a 3D ocean and statistical-dynamical atmosphere. Clim Dyn 19:585–598CrossRefGoogle Scholar
  46. Kessler A (1968) Globalbilanzen von Klimaelementen. Ein Beitrag zur allgemeinen Klimatologie der Erde. Ber. Inst Meteorol und Klimatol der Techn Univer Hannover No 3Google Scholar
  47. Kim S-J, Flato GM, Boer GJ, McFarlane NA (2002) A coupled climate model simulation of the Last Glacial Maximum, Part I: transient multi-decadal response. Clim Dyn 19:515–537CrossRefGoogle Scholar
  48. Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106CrossRefGoogle Scholar
  49. Le Treut H, McAvaney B (2000) A model intercomparison of equilibrium climate change in response to CO2 doubling. Notes du Pôle de Modélisation de l’IPSL No 18, Institut Pierre Simon LaPlace, Paris, FranceGoogle Scholar
  50. Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354CrossRefGoogle Scholar
  51. Maier-Reimer E, Mikolajewicz U, Hasselmann K (1993) Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J Phys Oceanogr 23:731–757CrossRefGoogle Scholar
  52. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean-atmosphere model. J Climate 1:841–866CrossRefGoogle Scholar
  53. Manabe S, Stouffer RJ (1999) Are two modes of thermohaline circulation stable? Tellus 51A:400–411CrossRefGoogle Scholar
  54. Mann ME (1998) A Study of Ocean-Atmosphere Interaction and Low-Frequency Variability of the Climate System. PhD Thesis, Yale University, New Haven, CT, 283 ppGoogle Scholar
  55. Matthews HD, Weaver AJ, Eby M, Meissner KJ (2003) Radiative forcing of climate by historical land cover change. Geophys Res Lett 30(2):Art. No. 1055Google Scholar
  56. Meissner KJ, Weaver AJ, Matthews HD, and Cox PM (2003) The role of land-surface dynamics in glacial inception: A study with the UVic Earth System Model. Clim Dyn 21:515–537Google Scholar
  57. Mokhov II, Demchenko PF, Eliseev AV, Khon VCh, Khvorost’yanov DV (2002) Estimation of global and regional climate changes during the 19th-21st centuries on the basis of the IAP RAS model with consideration for anthropogenic forcing. Izvestiya Atmos Ocean Phys 38 (5):555–568Google Scholar
  58. Mokhov II, Eliseev AV, Demchenko PF, Khon V Ch, Akperov MG, Arzahnov MM, Karpenko AA, Tikhonov VA, Chernokulsky AV, Sigaeva EV (2005) Climate changes and their assessment based on the IAP RAS global model simulations. Doklady Earth Sci (in press)Google Scholar
  59. Montoya M, Griesel A, Levermann A, Mignot J, Hofmann M, Ganopolski A, Rahmstorf S (2004) The Earth System Model of Intermediate Complexity CLIMBER-3α. Part I: description and performance for present day conditions. Clim Dyn (in press)Google Scholar
  60. Oglesby RJ, Saltzman B (1990) Extending the EBM—the effect of deep ocean temperature on climate with application to the cretaceous. Glob Plan Change 82 (3–4):237–259 CrossRefGoogle Scholar
  61. Ohring G, Adler S (1978) Some experiments with a Zonally Averaged Climate Model. J Atmos Sci 35:186–205Google Scholar
  62. Oka A, Hasumi H, Suginohara N (2001) Stabilization of thermohaline circulation by wind-driven and vertical diffusive salt transport. Clim Dyn 18:71–83CrossRefGoogle Scholar
  63. Oort AH, Rasmusson EM (1971) Atmospheric circulation statistics. NOAA Prof Pap 5, Rockville: 323 ppGoogle Scholar
  64. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367CrossRefGoogle Scholar
  65. Peixoto JP, Oort AH (1983) The atmospheric branch of the hydrological cycle and climate. In: Variations of the global water budget. Reidel, London: 5–65Google Scholar
  66. Petoukhov VK (1980) A zonal climate model of heat and moisture exchange in the atmosphere over the underlying layers of ocean and land In: Golitsyn GS, Yaglom AM (eds) Physics of the atmosphere and the problem of climate. Moscow, Nauka: 8–41 (in Russian)Google Scholar
  67. Petoukhov VK (1991) Dynamical-statistical modeling of the large-scale climatic processes. Dr. habil. Thesis, Leningrad Hydrometeorological Institute, St. Petersburg, 431 pp (in Russian)Google Scholar
  68. Petoukhov VK, Mokhov II, Eliseev AV, Semenov VA (1998) The IAP RAS Global Climate Model. Dialogue Publishing House, Moscow State University, Moscow, 110 ppGoogle Scholar
  69. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and perfomance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  70. Petoukhov V, Ganopolski A, Claussen M (2003) POTSDAM - a set of atmosphere statistical-dynamical models: theoretical background. PIK Report No 81, Potsdam Institute for Climate Impact Research (PIK), March 2003: 136 ppGoogle Scholar
  71. Petukhov VK, Feygel’son YM (1973) A model of long-period heat and moisture exchange in the atmosphere over the ocean Izvestiya. Atmos Ocean Phys 9:352–362Google Scholar
  72. Prinn R, Jacoby H, Sokolov A, Wang C, Xiao X, Yang Z, Eckhaus R, Stone P, Ellerman D, Melillo J, Fitzmaurice J, Kicklighter D, Holian G, Liu Y (1999) Integrated global system model for climate policy assessment: feedbacks and sensitivity studies. Clim Change 41:469–546CrossRefGoogle Scholar
  73. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811CrossRefGoogle Scholar
  74. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43(2):353–367CrossRefGoogle Scholar
  75. Ramanathan V, Lian MS, Cess RD (1979) Increased atmospheric CO2-zonal and seasonal estimates of the effect on the radiation energy-balance and surface-temperature. J Geophys Res 84(C8):4949–4958Google Scholar
  76. Renssen H, Goosse H, Fichefet T (2002) Modeling the effect of freshwater pulses on the early Holocene climate: The influence of high-frequency climate variability. Paleoceanography 17 (2), DOI 10.1029/2001PA000649Google Scholar
  77. Robock A (1980) The seasonal cycle of snow cover, sea ice and surface albedo. Mon Wea Rev 108:267–285CrossRefGoogle Scholar
  78. Ropelewski CF (1989) Monitoring large-scale cryosphere/atmosphere interactions. Adv Space Res 9:213–218CrossRefGoogle Scholar
  79. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Amer Meteor Soc 80:2261–2287CrossRefGoogle Scholar
  80. Rossow WB, Garder LC, Lu PJ, Walker AW (1991) International Satellite Cloud Climatology Project (ISCCP): documentation of cloud data. WMO/TD-No.266, World Meteorological Organization: 76 ppGoogle Scholar
  81. Saltzman B (1978) A Survey of Statistical-Dynamical Models of the Terrestrial Climate.Advances in Geophysics 20:183–295Google Scholar
  82. Saltzman B, Vernekar AD (1968) A parameterization of the large-scale transient eddy flux of relative angular momentum.Mon Wea Rev 96(12):854–857CrossRefGoogle Scholar
  83. Saltzman B, Vernekar AD (1971) An equilibrium solution for the axially symmetric component of the earth’s macroclimate.J Geophys Res 76(6):1498–1524CrossRefGoogle Scholar
  84. Saltzman B, Vernekar AD (1972) Global Equilibrium Solutions for the Zonally Averaged Macroclimate.J Geophys Res 77(21):3936–3945CrossRefGoogle Scholar
  85. Schiller A (1995) The mean circulation of the Atlantic Ocean north of 30S determined with the adjoint method applied to an ocean general circulation model. J Mar Res 53:453–497CrossRefGoogle Scholar
  86. Schmittner A, Meissner KJ, Eby M, Weaver AJ (2002) Forcing of the deep ocean circulation in simulations of the Last Glacial Maximum. Paleoceanogr 17, 5:1–5:15 (10.1029 / 2001PA000633)Google Scholar
  87. Schmitz WJ (1995) On the interbasin-scale thermohaline circulation. Rev Geophys 33:151–173CrossRefGoogle Scholar
  88. Schmitz Jr W, McCartney MS (1993) On the North Atlantic circulation. Rev Geophys 13:29–49CrossRefGoogle Scholar
  89. Schubert S, Wu C-Y, Zero J, Schemm J-K, Park C-K, Suarez M (1992) Monthly means of selected climate variables for 1985–1989. NASA Techn Memo, Goddard Space Flight Center: 376 ppGoogle Scholar
  90. da Silva AM, Young CC, Levitus S (1994) Atlas of Surface Marine Data, Vol 2: Anomalies of Directly Observed Quantities. NOAA Atlas NESDIS 7, U.S. Department of Commerce, Washington DC: 416 ppGoogle Scholar
  91. Stocker TF, Wright DG, Mysak LA (1992) A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J Climate 5:773–797CrossRefGoogle Scholar
  92. Stone PH (1972) A Simplified Radiative-Dynamical Model for the Static Stability of Rotating Atmospheres. J Atmos Sci 29 (3):405–418CrossRefGoogle Scholar
  93. Stowe LL, Jacobowitz H, Ohring G, Knapp KR, Nalli NR (2002) The Advanced Very High Resolution Radiometer (AVHHR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analysis and Evaluation. J Climate 15:1243–1260CrossRefGoogle Scholar
  94. Talley LD (1984) Meridional heat transport in the Pacific Ocean. J Phys Oceanogr 14:231–241CrossRefGoogle Scholar
  95. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunction for the Global Ocean. J Climate 16:3213–3226CrossRefGoogle Scholar
  96. Trenberth KE, Solomon A (1994) The global heat balance: heat transport in the atmosphere and ocean. Clim Dyn 10:107–134CrossRefGoogle Scholar
  97. Verbitsky MYa, Chalikov DV (1986) Modelling of the Glaciers-Ocean- Atmosphere System. In: Monin AS (ed) Leningrad, Hydrometeoizdat, 133 pp. (in Russian)Google Scholar
  98. Wang Z, Mysak LA (2000) A simple coupled atmosphere-ocean-sea ice-land surface model for climate and paleoclimate studies. J Climate 13:1150–1172CrossRefGoogle Scholar
  99. Wang Z, Mysak LA (2002) Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophys Res Lett, 29(23), 10.1029/2002GL015120Google Scholar
  100. Warren SG, Hahn CJ, London J, Chervin RM, Jenne RL (1986) Global distribution of total cloud cover and cloud type amounts over the ocean. Technical note tn-273+strNCARBoulder, CO42pp.+185 mapsGoogle Scholar
  101. Warren SG, Hahn CJ, London J, Chervin RM, Jenne RL (1988) Global distribution of total cloud cover and cloud type amounts over land. Technical note tn-273+strNCARBoulder, CO42pp.+200 mapsGoogle Scholar
  102. Weaver AJ, Eby M, Fanning AF, Wiebe EC (1998) Simulated influence of carbon dioxide, orbital forcing and ice sheets on the climate of the last glacial maximum. Nature 394:847–853CrossRefGoogle Scholar
  103. Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang HX, Yoshimori M (2001) The UVic Earth System Climate Model: model description, climatology, and applications to past and future climates. Atmosphere-Ocean 39(4):361–428Google Scholar
  104. Xie P, Arkin P (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558CrossRefGoogle Scholar
  105. Zebiak SE, Cane MA (1987) A Model El Niño-Southern Oscillation. Mon Wea Rev 115:2262–2278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • V. Petoukhov
    • 1
  • M. Claussen
    • 1
  • A. Berger
    • 2
  • M. Crucifix
    • 2
    • 3
  • M. Eby
    • 4
  • A. V. Eliseev
    • 5
  • T. Fichefet
    • 2
  • A. Ganopolski
    • 1
  • H. Goosse
    • 2
  • I. Kamenkovich
    • 6
  • I. I. Mokhov
    • 5
  • M. Montoya
    • 7
  • L. A. Mysak
    • 8
  • A. Sokolov
    • 9
  • P. Stone
    • 10
  • Z. Wang
    • 8
  • A. J. Weaver
    • 4
  1. 1.Potsdam Institute for Climate Impact Research Germany
  2. 2.Institut d‘Astronomie et de Géophysique Georges LemaîtreUniversité Catholique de Louvain Belgium
  3. 3.Hadley Centre for Climate Prediction and Research, Met OfficeExeter DevonUK
  4. 4.School of Earth and Ocean SciencesUniversity of Victoria Canada
  5. 5.A.M.Obukhov Institute of Atmospheric PhysicsRussian Academy of Sciences Russia
  6. 6.Department of Atmospheric Sciences, Joint Institute for the Study of the Atmosphere and the OceansUniversity of WashingtonSeattleUSA
  7. 7.Dpto. Astrofisica y Ciencias de la Atmosfera, Facultad de Ciencias FisicasUniversidad Complutense de Madrid Spain
  8. 8.Department of Atmospheric and Oceanic SciencesMcGill UniversityMontrealCanada
  9. 9.Joint Program on the Science and Policy of Global ChangeMassachusetts Institute of Technology USA
  10. 10.Department of Earth, Atmosphere and Planetary ScienceMassachusetts Institute of Technology USA

Personalised recommendations