Climate Dynamics

, Volume 25, Issue 6, pp 581–609

A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present-day land cover representations

  • Johannes Feddema
  • Keith Oleson
  • Gordon Bonan
  • Linda Mearns
  • Warren Washington
  • Gerald Meehl
  • Douglas Nychka


This study assesses the sensitivity of the fully coupled NCAR-DOE PCM to three different representations of present-day land cover, based on IPCC SRES land cover information. We conclude that there is significant model sensitivity to current land cover characterization, with an observed average global temperature range of 0.21 K between the simulations. Much larger contrasts (up to 5 K) are found on the regional scale; however, these changes are largely offsetting on the global scale. These results show that significant biases can be introduced when outside data sources are used to conduct anthropogenic land cover change experiments in GCMs that have been calibrated to their own representation of present-day land cover. We conclude that hybrid systems that combine the natural vegetation from the native GCM datasets combined with human land cover information from other sources are best for simulating such impacts. We also performed a prehuman simulation, which had a 0.39 K ~higher average global temperature and, perhaps of greater importance, temperature changes regionally of about 2 K. In this study, the larger regional changes coincide with large-scale agricultural areas. The initial cooling from energy balance changes appear to create feedbacks that intensify mid-latitude circulation features and weaken the summer monsoon circulation over Asia, leading to further cooling. From these results, we conclude that land cover change plays a significant role in anthropogenically forced climate change. Because these changes coincide with regions of the highest human population this climate impact could have a disproportionate impact on human systems. Therefore, it is important that land cover change be included in past and future climate change simulations.


  1. Alcamo J (ed) (1994) IMAGE 2.0: integrated modeling of global climate change. Kluwer, Dordrecht, pp 318Google Scholar
  2. Alcamo J, Leemans R, Kreileman E (eds) (1998) Global change scenarios of the 21st century. Results from the IMAGE 2.1 model. Pergamon, London, pp 296Google Scholar
  3. Ammann CM, Meehl GA, Washington WM, Zender CS (2003) A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys Res Lett 30(12):1657, DOI 10.1029/2003GL016875Google Scholar
  4. Avissar R (1995) Recent advances in the representation of land-atmosphere interactions in general circulation models. Rev Geophys 33:1005–1010, DOI 10.1029/95RG00258Google Scholar
  5. Bonan G (1994) Comparison of two land surface models using prescribed forcings. Journal of GeophysicalGoogle Scholar
  6. Betts RA (2001) Biogeophysical impacts of land use on present-day climate: near-surface temperature and radiative forcing. Atmos Sci Lett 2: 39–51, DOI 10.1006/asle.2001.0023Google Scholar
  7. Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user′s guide. NCAR Technical Note NCAR/TN-417+STR. National Center for Atmospheric Research, Boulder, Colorado, pp 150Google Scholar
  8. Bonan GB (1997) Effects of land use on the climate of the United States. Clim Change 37:449–486. DOI 10.1023/A:1005305708775Google Scholar
  9. Bonan GB (1998) The land surface climatology of the NCAR land surface model coupled to the NCAR Community Climate Model. J Clim 11(6):1307–1326. DOI 10.1175/1520–0442(1998)011<1307Google Scholar
  10. Bonan GB (1999) Frost followed the plow: impacts of deforestation on the climate of the United States. Ecol Appl 9(4):1305–1315CrossRefGoogle Scholar
  11. Bonan GB (2001) Observational evidence for reduction of daily maximum temperature by croplands in the Midwest United States. J Clim 14(11):2430–2442. DOI 10.1175/1520–0442(2001)014<2430Google Scholar
  12. Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE, Yang Z (2002) The land surface climatology of the community land model coupled to the NCAR Community Climate Model. J Clim 15(22):3123–3149. DOI 10.1175/1520–0442(2002)015<3123Google Scholar
  13. Boone A, Habets F, Noilhan J, Clark D, Dirmeyer P, Fox S, Gusev Y, Haddeland I, Koster R, Lohmann D, Mahanama S, Mitchell K, Nasonova O, Niu G-Y, Pitman A, Polcher J, Shmakin AB, Tanaka K, van den Hurk B, Vérant S, Verseghy D, Viterbo P, Yang Z-L (2004) The Rhô ne-aggregation land surface scheme intercomparison project: an overview. J Clim 17(1):187–208. DOI 10.1175/1520–0442(2004)017<0187Google Scholar
  14. Bounoua LR, DeFries R, Collatz GJ, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Clim Change 52:29–64. DOI 10.1023/A:1013051420309Google Scholar
  15. Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Global Ecology and Biogeography 8:509–517CrossRefGoogle Scholar
  16. Chase TN, Peilke Sr. RA, Kittel TGF, Nemani RR, Running SW (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dyn 16(2–3):93–105. DOI 10.1007/s003820050007Google Scholar
  17. Chen TH, Henderson-Sellers A, Milly PCD, Pitman AJ, Beljaars ACM, Polcher J, Abramopoulos F, Boone A, Chang S, Chen F, Dai Y, Desborough C E, Dickinson RE, Dü menil L, Ek M, Garratt JR, Gedney N, Gusev YM, Kim J, Koster R, Kowalczyk EA, Laval K, Lean J, Lettenmaier D, Liang X, Mahfouf J-F, Mengelkamp H-T, Mitchell K, Nasonova ON, Noilhan J, Robock A, Rosenzweig C, Schaake J, Schlosser CA, Schulz J-P, Shao Y, Shmakin AB, Verseghy DL, Wetzel P, Wood EF, Xue Y, Yang Z-L, Zeng Q (1997) Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. J Clim 10(6):1194–1215. DOI 10.1175/1520–0442(1997)010<1194Google Scholar
  18. Claussen M, Brovkin V, Ganapolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28(6):1011–1014CrossRefGoogle Scholar
  19. Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentration on the climate of Amazonia. J Clim 13(1):18–34. DOI 10.1175/1520–0442(2000)013<0018Google Scholar
  20. Cox, P, Betts R, Bunton C, Essery R, Rowntree PR, Smith J (1999) The impact of new land-surface physics on the GCM simulation and climate sensitivity. Clim Dyn 15(3):183–203. DOI 10.1007/s003820050276Google Scholar
  21. DeFries RS, Bounoua L, Collatz GJ (2002) Human modification of the landscape and surface climate in the next 50 years. Glob Change Biol 8:438–458. DOI 10.1046/j.1365–2486.2002.00483.xGoogle Scholar
  22. Eastman JL, Coughenour MB, Pielke RA Sr (2001) The regional effects of CO2 and landscape change using a coupled plant and meteorological model. Global Change Biol 7:797–815. DOI 10.1046/j.1354–1013.2001.00411.xGoogle Scholar
  23. Goudie A (1990) The human impact on the natural environment. Basil Blackwell, Oxford, pp 388Google Scholar
  24. Govindasamy B, Duffy PB, Caldeira K (2001) Land use changes and Northern Hemisphere cooling. Geophys Res Lett 28(2):291–294CrossRefGoogle Scholar
  25. Hansen J, Sato M, Lacis A, Ruedy R, Tegen I, Mathews E (1998) Climate forcings in the industrial era. Proc Natl Acad Sci 95:12753–12758CrossRefPubMedGoogle Scholar
  26. Henderson-Sellers A, Dickinson R, Durbridge T, Kennedy P, McGuffie K, Pitman A (1993) Tropical deforestation: modeling local to regional scale climate change. J Geophys Res 98:7289–7315CrossRefGoogle Scholar
  27. Intergovernmental Panel on Climate Change (IPCC) (2001) In: Houghton JJ, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) climate change 2000: the scientific basis, IPCC Working Group I, Cambridge. University Press, Cambridge, pp 881Google Scholar
  28. Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindseay J, Charlson RJ, Peterson TC (1993) Asymmetric trends of daily maximum and minimum temperatures. Bull Am Meteorol Soc 74:1007–1023. DOI 10.1175/1520–0477(1993)074<1007Google Scholar
  29. Leemans R, van den Born GJ (1994) Determining the potential global distribution of natural vegetation, crops and agricultural productivity. Water Air Soil Pollut 76:133–161CrossRefGoogle Scholar
  30. Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59CrossRefGoogle Scholar
  31. Mahoney JR et al (2003) Strategic plan for the US climate change science program. Climate Change Science Program Office, Washington DCGoogle Scholar
  32. Marland G, Pielke RA Sr, Apps M, Avissar R, Betts RA, Davis KJ, Frumhoff PC, Jackson ST, Joyce L, Kauppi P, Katzenberger J, MacDicken KG, Neilson R, Niles JO, dutta S. Niyogi D, Norby RJ, Pena N, Sampson N, Xue Y (2003) The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Climate Policy 3:149–157. DOI 10.1016/S1469-3062(03)00028-7Google Scholar
  33. Matthews HD, Weaver AJ, Eby M, Meissner KJ (2003) Radiative forcing of climate by historical land cover change. Geophys Res Lett 30(2):1055. DOI 10.1029/2002GL016098Google Scholar
  34. Meehl GA, Washington WM, Wigley TML, Arblaster JM, Dai A (2003) Solar and greenhouse gas forcing and climate response in the 20th century. J Clim 16(3):426–444. DOI 10.1175/1520-0442(2003)016<0426Google Scholar
  35. Meehl GA, Washington WM, Ammann C, Arblaster JM, Wigley TML, Tebaldi C (2004) Combinations of natural and anthropogenic forcings and 20th century climate. J Clim 17(19):3721–3727. DOI 10.1175/1520-0442(2004)017<3721Google Scholar
  36. Myhre G, Myhre A (2003) Uncertainty in radiative forcing due to surface albedo changes caused by land-use changes. J Clim 16(10):1511–1524. DOI 10.1175/1520-0442(2003)016<1511Google Scholar
  37. Nakićenović N, Swart R (eds) (2000) Emissionsscenarios—a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge pp 599Google Scholar
  38. Nobre CA, Sellers PJ, Shukla J (1991) Amazonian deforestation and regional climate change. J Clim 4(10):957–987. DOI 10.1175/1520-0442(1991)004<0957Google Scholar
  39. Oleson KW, Bonan GB, Levis S, Vertenstein M (2004) Effects of land use change on US climate: impact of surface datasets and model biogeophysics. Clim Dyn Online DOI 10.1007/s00382-004-0426-9Google Scholar
  40. Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems. Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  41. Peylin P, Polcher J, Bonan G, Williamson DL, Laval K (1997) Comparison of two complex land surface schemes coupled to the National Center for Atmospheric Research general circulation model. J Geophys Res 102D(16):19413–19431CrossRefGoogle Scholar
  42. Pielke R Sr (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39(2):151–177CrossRefGoogle Scholar
  43. Pielke RA, Avissar R (1990) Influence of landscape structure on local and regional climate. Landscape Ecol 4:133–155CrossRefGoogle Scholar
  44. Pielke RA Sr, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi D, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system—relevance to climate change policy beyond the radiative effect of greenhouse gases. Philos Trans A 360(1797):1705–1719. DOI 10.1098/rsta.2002.1027Google Scholar
  45. Pitman AJ, Zhao M (2000) The relative impact of observed change in land cover and carbon dioxide as simulated by a climate model. Geophys Res Lett 27(9):1267–1270CrossRefGoogle Scholar
  46. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM, (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  47. Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13(4):997–1027CrossRefGoogle Scholar
  48. RIVM (Rijks Instituut voor Volksgezondheid en Milieu), 2002. IMAGE 2.2 CD release and documentation. The IMAGE 2.2 implementation of the SRES scenarios: a comprehensive analysis of emissions, climate change and impacts in the 21st century. See for further information.
  49. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363. DOI 10.1038/43855Google Scholar
  50. Santer BD, Wigley TML, Meehl GA, Wehner MF, Mears C, Schabel M, Wentz FJ, Ammann C, Arblaster J, Bettge T, Washington WM, Taylor KE, Boyle JS, Bruggemann W, Doutriaux C (2003a) Influence of satellite data uncertainties on the detection of externally-forced climate change. Science 300(5623):1280–1284. DOI 10.1126/science.1082393Google Scholar
  51. Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bruggemann W (2003b) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301(5623):479–483. DOI 10.1126/science.1084123Google Scholar
  52. Tsvetsinskaya EA, Mearns LO, Easterling WE (2001) Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part II: atmospheric response to crop growth and development. J Clim 14(5):711–729. DOI 10.1175/1520–0442(2001)014<0692Google Scholar
  53. Washington WM, Weatherly JW, Meehl GA, Semtner AJ Jr, Bettge TW, Craig AP, Strand WG Jr, Arblaster JM, Wayland VB, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16(10–11):755–774. DOI 10.1007/s003820000079Google Scholar
  54. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360. DOI 10.1038/43848Google Scholar
  55. Williams MAJ, Balling RC (1996) Interactions of desertification and climate. For WMO/UNEP, Arnold Press, London pp 270Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Johannes Feddema
    • 1
  • Keith Oleson
    • 2
  • Gordon Bonan
    • 2
  • Linda Mearns
    • 2
  • Warren Washington
    • 2
  • Gerald Meehl
    • 2
  • Douglas Nychka
    • 2
  1. 1.Department of GeographyUniversity of KansasLawrenceUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations