Advertisement

Climate Dynamics

, Volume 25, Issue 4, pp 351–362 | Cite as

Intercomparison and validation of snow albedo parameterization schemes in climate models

  • Christina A. PedersenEmail author
  • Jan-Gunnar Winther
Article

Abstract

Snow albedo is known to be crucial for heat exchange at high latitudes and high altitudes, and is also an important parameter in General Circulation Models (GCMs) because of its strong positive feedback properties. In this study, seven GCM snow albedo schemes and a multiple linear regression model were intercompared and validated against 59 years of in situ data from Svalbard, the French Alps and six stations in the former Soviet Union. For each site, the significant meteorological parameters for modeling the snow albedo were identified by constructing the 95% confidence intervals. The significant parameters were found to be: temperature, snow depth, positive degree day and a dummy of snow depth, and the multiple linear regression model was constructed to include these. Overall, the intercomparison showed that the modeled snow albedo varied more than the observed albedo for all models, and that the albedo was often underestimated. In addition, for several of the models, the snow albedo decreased at a faster rate or by a greater magnitude during the winter snow metamorphosis than the observed albedo. Both the temperature dependent schemes and the prognostic schemes showed shortcomings.

Keywords

Root Mean Square Error Snow Depth Multiple Linear Regression Model Surface Albedo Former Soviet Union 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work is supported by the Research Council of Norway, the Norwegian Polar Institute and the University of Tromsø. We thank J.-B. Ørbæk for providing data from Ny-Ålesund, P. Etchevers for providing data from Col de Porte, and A. Robock and N. Speranskaya for valuable information regarding the data from the former Soviet stations. Further, we acknowledge R. Essery, J. Hansen, E. Roeckner, D. Verseghy and Z.-L. Yang for answering questions regarding their respective GCM models and albedo parameterization, and G. Elvebakk for valuable discussions regarding the multiple linear regression model. We also would like to thank F. Godtliebsen, D. K. Hall, B. Ivanov, M. Køltzow, A. Ohmura, E. Roeckner and A. C. Roesch for valuable comments during the early stage of the work, and R. Hall and P. Lewis are acknowledged for their careful review of the manuscript.

References

  1. Aoki T, Hachikubo A, Hori M (2003) Effects of snow physical parameters on shortwave broadband albedos. J Geophys Res 108(D19)CrossRefGoogle Scholar
  2. Baker DG, Ruschy DL, Wall DB (1990) The albedo decay of prairie snows. J Appl Meteorol – Notes and Correspondence 29:179–187CrossRefGoogle Scholar
  3. Baker DG, Skaggs RH, Ruschy DL (1991) Snow depth required to mask the underlying surface. J Appl Meteorol – Notes and Correspondence) 30:387–392CrossRefGoogle Scholar
  4. Betts AK, Ball JH (1997) Albedo over the Boreal Forest. J Geophys Res 102(D24):28901–28909CrossRefGoogle Scholar
  5. Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE, Yang Z-L (2002) The land surface climatology of the community land model coupled to the NCAR community climate Model. J Climate 15:3123–3149CrossRefGoogle Scholar
  6. Boone A, Etchevers P (2001) An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: local-scale evaluation at an alpine site. J Hydrometeorol 2:374–394CrossRefGoogle Scholar
  7. Brock BW, Willis IC, Sharp MJ (2000) Measurement and parameterization of albedo variations at Haut Glacier d’Arolla, Switzerland. J Glaciol 46(155)Google Scholar
  8. Douville H, Royer J-F, Mahfouf J-F (1995) A new snow parameterization for the Météo France climate model. Climate Dyn 12:21–35CrossRefGoogle Scholar
  9. Essery R, Martin E, Douville H, Fernández A, Brun E (1999) A comparison of four snow models using observations from an alpine site. Climate Dyn 15:583–593CrossRefGoogle Scholar
  10. Essery R, Best M, Cox P (2001) MOSES 2.2 Technical documentation. Technical report, Hadley Centre, Met Office, UKGoogle Scholar
  11. Førland EJ, Allerup P, Dahlström B, Elomaa E, Jónsson T, Madsen H, Perälä J, Rissanen P, Vedin H, Vejen F (1996) Report No. 24/96: manual for operational correction of nordic precipitation data. Norwegian Meteorological InstituteGoogle Scholar
  12. Gerland S, Winther J-G, Ørbæk JB, Liston GE, Øritsland NA, Blanco A, Ivanov B (1999) Physical and optical properties of snow covering arctic tundra on Svalbard. Hydrol Process 13:2331–2343CrossRefGoogle Scholar
  13. Gerland S, Liston GE, Winther J-G, Ørbæk JB, Ivanov BV (2000) Attenuation of solar radiation in arctic snow: field observations and modelling. Ann Glaciol 31:364–368CrossRefGoogle Scholar
  14. Grenfell T, Perovich DK (2004) Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. J Geophys Res 109(C1)CrossRefGoogle Scholar
  15. Hansen J, Nazarenko L (2003) Soot climate forcing via snow and ice albedos. P Natl Acad Sci USA 101(2):423–428CrossRefGoogle Scholar
  16. Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy R, Travis L (1983) Efficient three-dimensional global models for climate studies: model I and II. Mon Weather Rev 111(4):609–662CrossRefGoogle Scholar
  17. Hanssen-Bauer I, Førland EJ, Nordli PØ (1996) Report No. 31/96: measured and true precipitation at Svalbard. Technical report, Norwegian Meteorological InstituteGoogle Scholar
  18. Hisdal V, Finnekåsa Ø (1996) Radiation measurements in Ny-Ålesund, Spitsbergen 1988–1992. Technical report, Norwegian Polar InstituteGoogle Scholar
  19. Hisdal V, Finnekåsa Ø, Vinje T (1992) Radiation measurements in Ny-Ålesund, Spitsbergen 1981–1987. Technical report, Norwegian Polar InstituteGoogle Scholar
  20. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University PressGoogle Scholar
  21. Internet Page (2003) http://www.ecmwf.int/research/ifsdocs/physics/. European Centre for Medium-Range Weather Forcasts
  22. Iqbal M (1983) An introduction to solar radiation. Academic Press, New YorkGoogle Scholar
  23. Ivanov BV (1999) New data on sea-ice Albedo in the Laptev and Barents Seas. In: Kassens H, Bauch HA, Dmitrenko I, Eicken H, Hubberten H-W, Melles M, Thiede J, Timokhov L (eds) Land-ocean systems in the Siberian Arctic: dynamics and history. Springer, Berlin Heidelberg New York, pp 59–63Google Scholar
  24. Jin J, Gao X, Yang Z-L, Bales RC, Sorooshian S, Dickinson RE, Sun SF, Wu GX (1999) Comparative analysis of physically based snowmelt models for climate simulations. J Climate 12:2643–2657CrossRefGoogle Scholar
  25. Killingtveit Å, Sæther B (2001) Hydrologiske modeller for Tilsigsprognosering - Med Hovedvekt p HBV-modellen (in Norwegian)Google Scholar
  26. Klein AG, Stroeve J (2002) Development and validation of a snow albedo algorithm for the MODIS instrument. Ann Glaciol 34:45–52CrossRefGoogle Scholar
  27. Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariable methods. Duxbury PressGoogle Scholar
  28. Lejeune Y, Martin E (1995) Application du Modele CROCUS aux Donnees de la Saison 93/94 du Col de Porte et de la Campagne Leadex 92 (in French). Technical Report No 6, Meteo FranceGoogle Scholar
  29. Loth B, Graf H-F, Oberhuber JM (1993) Snow cover model for global climate simulations. J Geophys Res 98(D6):10451–10464CrossRefGoogle Scholar
  30. Marshall SE (1989) A physical parameterization of snow albedo for use in climate models. PhD thesis, University of Washington, National Center for Atmospheric Research and University of ColoradoGoogle Scholar
  31. Marshall S, Oglesby RJ (1994) An improved snow hydrology for GCMs. Part 1: snow cover fraction, albedo, grain size and age. Climate Dyn 10:21–37CrossRefGoogle Scholar
  32. Montgomery DC, Peck EA, Vining GG (2001) Introduction to linear regression analysis. WileyGoogle Scholar
  33. Oerlemans J, Knap WH (1998) A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. J Glaciol 44(147):231–238Google Scholar
  34. Perovich DK, Roesler CS, Pegau WS (1998) Variability in Arctic Sea ice optical properties. J Geophys Res 103(C1):1193–1208CrossRefGoogle Scholar
  35. Perovich DK, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic Sea ice. J Geophys Res 107(C10)Google Scholar
  36. Pomeroy JW, Gray DM (1995) Snowcover. Accumulation, relocation and management. NHRI Science Report No. 7Google Scholar
  37. Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, Liu S, Namkhai A (2000) The global soil moisture data bank. Bull Am Meterol Soc 81(6):1281–1299CrossRefGoogle Scholar
  38. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5 - part 1. Technical Report 349, Max Planck Institute for MeteorologyGoogle Scholar
  39. Roesch AC (2000) Assessment of the land surface scheme in climate models with focus on surface albedo and snow cover. PhD thesis, Swiss Federal Institute of Technology ZurichGoogle Scholar
  40. Roesch A, Wild M, Gilgen H, Ohmura A (2001) A new snow cover fraction parameterisation for the ECHAM4 GCM. Climate Dyn 17:933–946CrossRefGoogle Scholar
  41. Sergent C, Pougatch E, Sudul M, Bourdelles B (1993) Experimental investigation of optical snow properties. Ann Glaciol 17Google Scholar
  42. Slater AG, Pitman AJ, Desborough CE (1998) The validation of a snow parameterization designed for use in general circulation models. Int J Climatol 18:595–617CrossRefGoogle Scholar
  43. Swedishe Meterological and Hydrological Institute (2001) HBV/IHMS-InformationGoogle Scholar
  44. Verseghy DL (1991) CLASS - A Canadian land surface scheme for GCMs. I. Soil model. Int J climatol 11:111–133CrossRefGoogle Scholar
  45. Vinnikov KY, Yeserkepova IB (1991) Soil moisture: empirical data and model results. J Climate 4:66–79CrossRefGoogle Scholar
  46. Walpole RE, Myers RH, Myers SL, Ye K (2002) Probability and statistics for engineers and scientists. Prentice HallGoogle Scholar
  47. Warren SG (1982) Optical properties of snow. Rev Geophys Space Phys 20(1):67–89Google Scholar
  48. Warren SG, Wiscombe WJ (1980) A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J Atmos Sci 37:2724–2745Google Scholar
  49. Winther J-G (1993) Short- and long-term variability of snow albedo. Nordic Hydrol 24:199–212Google Scholar
  50. Winther J-G, Gerland S, Ørbæk JB, Ivanov B, Blanco A, Boike J (1999) Spectral reflectance of melting snow in a high Arctic watershed on Svalbard: some implications for optical satellite remote sensing studies. Hydrol Process 13:2033–2049CrossRefGoogle Scholar
  51. Winther J-G, Godtliebsen F, Gerland S, Isachsen PE (2002) Surface albedo in Ny-Ålesund, Svalbard: variability and trends during 1981–1997. Global Planet Change 32:127–139CrossRefGoogle Scholar
  52. Winther J-G, Bruland O, Sand K, Gerland S, Marechal D, Ivanov B, Glowacki P, König M (2003) Snow research in Svalbard - an overview. Polar Res 22(2):125–144CrossRefGoogle Scholar
  53. Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. I: pure snow. J Atmos Sci 37:2712–2733CrossRefGoogle Scholar
  54. Yang D, Goodison BE, Metcalfe JR, Golubev VS, Elomaa E, Gunther T, Bates R, Pangburn T, Hanson CL, Emerson D, Copaciu V, Milkovic J (1995) Accuracy of Tretyakov precipitation gauge: result of WMO intercomparison. Hydrol Process 9:877–895CrossRefGoogle Scholar
  55. Yang Z-L, Dickinson RE, Robock A, Vinnikov KY (1997) Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J Climate 10:353–373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Norwegian Polar InstituteTromsøNorway

Personalised recommendations