Climate Dynamics

, Volume 25, Issue 5, pp 447–459

Impact of vegetation changes on the dynamics of the atmosphere at the Last Glacial Maximum



Much work is under way to identify and quantify the feedbacks between vegetation and climate. Palaeoclimate modelling may provide a mean to address this problem by comparing simulations with proxy data. We have performed a series of four simulations of the Last Glacial Maximum (LGM, 21,000 years ago) using the climate model HadSM3, to test the sensitivity of climate to various changes in vegetation: a global change (according to a previously discussed simulation of the LGM with HadSM3 coupled to the dynamical vegetation model TRIFFID); a change only north of 35°N; a change only south of 35°N; and a variation in stomatal opening induced by the reduction in atmospheric CO2 concentration. We focus mainly on the response of temperature, precipitation, and atmosphere dynamics. The response of continental temperature and precipitation mainly results from regional interactions with vegetation. In Eurasia, particularly Siberia and Tibet, the response of the biosphere substantially enhances the glacial cooling through a positive feedback loop between vegetation, temperature, and snow-cover. In central Africa, the decrease in tree fraction reduces the amount of precipitation. Stomatal opening is not seen to play a quantifiable role. The atmosphere dynamics, and more specifically the Asian summer monsoon system, are significantly altered by remote changes in vegetation: the cooling in Siberia and Tibet act in concert to shift the summer subtropical front southwards, weaken the easterly tropical jet and the momentum transport associated with it. By virtue of momentum conservation, these changes in the mid-troposphere circulation are associated with a slowing of the Asian summer monsoon surface flow. The pattern of moisture convergence is slightly altered, with moist convection weakening in the western tropical Pacific and strengthening north of Australia.

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Met OfficeHadley Centre for Climate Prediction and ResearchDevonUK

Personalised recommendations