Climate Dynamics

, Volume 24, Issue 6, pp 577–590

High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions?

  • A. Jost
  • D. Lunt
  • M. Kageyama
  • A. Abe-Ouchi
  • O. Peyron
  • P. J. Valdes
  • G. Ramstein
Article

Abstract

The analyses of low-resolution models simulations of the last glacial maximum (LGM, 21 kyr BP) climate have revealed a large discrepancy between all the models and pollen-based palaeoclimatic reconstructions. In general, the models are too warm relative to the observations, especially in winter, where the difference is of the order of 10°C over western Europe. One of the causes of this discrepancy may be related to the low spatial resolution of these models. To assess the impact of using high-resolution models on simulated climate sensitivity, we use three approaches to obtain high-resolution climate simulations over Europe: first an atmospheric general circulation model (AGCM) with a stretched grid over Europe, second a homogeneous T106 AGCM (high resolution everywhere on the globe) and last a limited area model (LAM) nested in a low-resolution AGCM. With all three methods, we have performed simulations of the European climate for present and LGM conditions, according to the experimental design recommended by the Palaeoclimate Modeling Intercomparison Project (PMIP). Model results have been compared with updated pollen-based palaeoclimatic indicators for temperature and precipitation that were initially developed in PMIP. For each model, a low-resolution global run was also performed. As expected, the low-resolution simulations underestimate the large cooling indicated by pollen data, especially in winter, despite revised slightly warmer reconstructions of the temperatures of the coldest month, and show results in the range of those obtained in PMIP with similar models. The two high-resolution AGCMs do not improve the temperature field and cannot account for the discrepancy between model results and data, especially in winter. However, they are able to reproduce trends in precipitation more closely than their low-resolution counterparts do, but the simulated climates are still not as arid as depicted by the data. Conversely, the LAM temperature results compare well with climate reconstructions in winter but the simulated hydrological cycle is not consistent with the data. Finally, these results are discussed in regard of other possible causes for discrepancies between models and palaeoclimatic reconstructions for the LGM European climate.

References

  1. Barron E, Pollard D (2002) High-resolution climate simulations of oxygen isotope stage 3 in Europe. Q Res 58:296–309CrossRefGoogle Scholar
  2. Beaudouin C (2003) Effets du dernier cycle sur la végétation de la basse vallée du Rhône et sur la sédimentation de la plate-forme du golfe du Lion d’après la palynologie. PhD Thesis, Claude Bernard University of Lyon 1, France 417 pGoogle Scholar
  3. Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2362–2367CrossRefGoogle Scholar
  4. Braconnot P, Joussaume S, Harrison SP, Hewitt C, Valdes PJ, Ramstein G, Stouffer RJ, Otto-Bliesner B, Taylor T (2003) The second phase of the Paleoclimate Modelling Intercomparison Project (PMIPII). Clivar ExchangesGoogle Scholar
  5. CLIMAP (1981) Seasonal reconstructions of the Earth’s surface at the last glacial maximum. Map Chart Series MC–36 Geological Society of America, Boulder, ColoradoGoogle Scholar
  6. COHMAP Members (1988) Climatic changes of the last 18,000 years: observations and model simulations. Science 241:1043–1052CrossRefGoogle Scholar
  7. Crowley TJ, Baum SK (1997) Effect of vegetation on an ice-age climate model simulation. J Geophys Res 102:16,463–16,480CrossRefGoogle Scholar
  8. Déqué M, Piedelievre JP (1995) High resolution climate simulation over Europe. Clim Dyn 11:321–339CrossRefGoogle Scholar
  9. Dong B, Valdes PJ (2000) Climates at the last glacial maximum: influence of model horizontal resolution. J Clim 13:1554–1573CrossRefGoogle Scholar
  10. Guiot J (1990) Methodology of palaeoclimatic reconstruction from pollen in France. Palaeogeography, Palaeoclimatology, Palaeoecology 80:49–69CrossRefGoogle Scholar
  11. Harrison SP, Braconnot P, Joussaume S, Hewitt C, Stouffer RJ (2002) Fourth international workshop of the Palaeoclimate Modelling Intercomparison Project (PMIP): launching PMIP Phase II. EosGoogle Scholar
  12. Heusser LE (1988) Pollen distribution in marine sediments on the continental margin of northern California. Mar Geol 80:131–147CrossRefGoogle Scholar
  13. Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palyno 117:1–29CrossRefGoogle Scholar
  14. Hostetler SW, Giorgi F, Bates GT, Bartlein PJ (1994) Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Science 263:665–668CrossRefGoogle Scholar
  15. Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. 1. Assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449CrossRefGoogle Scholar
  16. Jones RG, Murphy JM, Noguer M, Keen AB (1997) Simulation of climate change over Europe using a nested regional-climate model. 2. Comparison of driving and regional model responses to a doubling of carbon dioxide. Q J R Meteorol Soc 123:265–292CrossRefGoogle Scholar
  17. Joussaume S, Taylor KE (1995) Status of the Paleoclimate Modelling Intercomparison Project (PMIP). In: Proceedings of the first international AMIP scientific conference, Monterrey, California, USA, 15–19 May 1995, WRCP–92, pp 425–430Google Scholar
  18. Kageyama M, Valdes PJ (2000) Impact of the North American ice-sheet orography on the last glacial maximum eddies and snowfall. Geophys Res Lett 27:1515–1518CrossRefGoogle Scholar
  19. Kageyama M, Valdes PJ, Ramstein G, Hewitt CD, Wyputta U (1999) Northern Hemisphere storm-tracks in present day and last glacial maximum climate simulations: a comparison of the European PMIP models. J Clim 12:742–760CrossRefGoogle Scholar
  20. Kageyama M, Peyron O, Tarasov P, Pinot S, Guiot J, Ramstein G, Joussaume S, PMIP participating groups (2001) The last glacial maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Clim Dyn 17:23–43CrossRefGoogle Scholar
  21. Kageyama M, Harrison SP, Abe-Ouchi A (2004) The depression of tropical snowlines at the last glacial maximum: what can we learn from climate model experiments? Quatern Int (in press)Google Scholar
  22. Kislov AV, Tarasov PE, Sourkova GV (2002) Pollen and other proxy-based reconstructions and PMIP simulations of the last glacial maximum mean annual temperature: an attempt to harmonize the data-model comparison procedure. Acta Palaeontol Sinica 41:539–545Google Scholar
  23. Kubatzki C, Claussen M (1998) Simulation of the global bio-geophysical interactions during the last glacial maximum. Clim Dyn 14:461–471CrossRefGoogle Scholar
  24. Li ZX, Conil S (2003) Transient response of an atmospheric GCM to North Atlantic SST anomalies. J Clim 16:3993–3998CrossRefGoogle Scholar
  25. Numaguti A, Takahashi M, Nakajima T, Sumi A (1997) Description of CCSR/NIES Atmospheric General Circulation Model. In: CGER’s Supercomputer Monograph Report, Center for Global Environmental Research, National Institute for Environmental Studies, vol3, pp 1–48Google Scholar
  26. Peltier WR (1994) Ice age paleotopography. Science 265:195–201CrossRefGoogle Scholar
  27. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  28. Peyron O, Guiot J, Cheddadi R, Tarasov P, Reille M, de Beaulieu JL, Bottema S, Andrieu V (1998) Climatic reconstruction in Europe for 18,000 years BP from pollen data. Q Res 49:183–196CrossRefGoogle Scholar
  29. Peyron O, Bégeot C, Brewer S, Heiri O, Magny M, Millet L, Ruffaldi P, Van Campo E, Yu G (2004) Lateglacial climate in the Jura Mountains (France) based on different quantitative reconstruction approaches from pollen, lake-levels, and chironomids. Q ResGoogle Scholar
  30. Pinot S, Ramstein R, Harrison SP, Prentice I, Guiot J, Stute M, Joussaume S (1999a) Tropical paleoclimates at the last glacial maximum: comparison of Paleoclimate Modelling Intercomparison Project (PMIP) simulations and paleodata. Clim Dyn 15:857–874CrossRefGoogle Scholar
  31. Pinot S, Ramstein G, Marsiat I, de Vernal A, Peyron O, Duplessy JC, Weinelt M (1999b) Sensitivity of the European LGM climate to North Atlantic sea-surface temperature. Geophys Res Lett 26:1893–1896CrossRefGoogle Scholar
  32. Pollard D, Barron EJ (2003) Causes of model-data discrepancies in European climate during oxygen isotope stage 3 with insights from the last glacial maximum. Q Res 59:108–113CrossRefGoogle Scholar
  33. Poutou E (2003) Etude numérique du rôle des interactions entre la surface et l’atmosphère dans le cadre d’un changement climatique aux hautes latitudes nord. PhD Thesis, Joseph Fourier University of Grenoble 1, France 336 pGoogle Scholar
  34. Renssen H, Isarin RFB, Vandenberghe J, Lautenschlager M, Schlese U (2000) Permafrost as a critical factor in paleoclimate modelling: the Younger Dryas case in Europe. Earth Planet Sci Lett 176:1–5CrossRefGoogle Scholar
  35. Renssen H, Isarin RFB, Jacob D, Podzun R, Vandenberghe J (2001) Simulation of the Younger Dryas climate in Europe using a regional climate model nested in an AGCM: preliminary results. Global Planet Change 30:41–57CrossRefGoogle Scholar
  36. Rind D (1987) Components of the ice age circulation. J Geophys Res 92:4241–4281CrossRefGoogle Scholar
  37. Sarnthein M, Gersonde R, Niebler S, Pflaumann U, Spielhagen R, Thiede J, Wefer G, Weinelt M (2003) Overview of glacial Atlantic ocean mapping (GLAMAP 2000). Paleoceanography 18:1030CrossRefGoogle Scholar
  38. Tarasov PE, Peyron O, Guiot J, Brewer S, Volkova VS, Bezusko LG, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK (1999) Last glacial maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and macrofossil data. Clim Dyn 15:227–240CrossRefGoogle Scholar
  39. Van der Kaars S, De Deckker P (2003) Pollen distribution in marine surface sediments offshore western Australia. Rev Palaeobot Palynol 124:113–129CrossRefGoogle Scholar
  40. Weinelt M, Sarnthein M, Pflaumann U, Schulz H, Jung S, Erlenkeuser H (1996) Ice-free nordic seas during the last glacial maximum? Potential sites of deepwater formation. Paleoclimates 1:283–309Google Scholar
  41. Yu G, Tang LY, Yang XD, Ke XK, Harrison SP (2001) Modern pollen samples from alpine vegetation on the Tibetan Plateau. Global Ecol Biogeogr 10:503–520CrossRefGoogle Scholar
  42. Zhou TJ, Li ZX (2002) Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM. Clim Dyn 19:167–180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A. Jost
    • 1
  • D. Lunt
    • 2
  • M. Kageyama
    • 3
  • A. Abe-Ouchi
    • 4
  • O. Peyron
    • 5
  • P. J. Valdes
    • 2
  • G. Ramstein
    • 3
  1. 1.Université Pierre et Marie CurieParisFrance
  2. 2.Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical SciencesUniversity of BristolBristolUnited Kingdom
  3. 3.Laboratoire des Sciences du Climat et de l‘EnvironnementIPSL, UMR CEA-CNRSGif-sur-YvetteFrance
  4. 4.CCSR, The University of Tokyo Japan
  5. 5.Laboratoire de Chrono-Ecologie, CNRS UMR 6565, Université de Franche-ComtéBesançonFrance

Personalised recommendations