Climate Dynamics

, Volume 24, Issue 6, pp 545–561

Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system

  • Reinhard Calov
  • Andrey Ganopolski
  • Martin Claussen
  • Vladimir Petoukhov
  • Ralf Greve
Article

Abstract

We study the mechanisms of glacial inception by using the Earth system model of intermediate complexity, CLIMBER-2, which encompasses dynamic modules of the atmosphere, ocean, biosphere and ice sheets. Ice-sheet dynamics are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. We have performed transient experiments starting at the Eemiam interglacial, at 126 ky BP (126,000 years before present). The model runs for 26 kyr with time-dependent orbital and CO2 forcings. The model simulates a rapid expansion of the area covered by inland ice in the Northern Hemisphere, predominantly over Northern America, starting at about 117 kyr BP. During the next 7 kyr, the ice volume grows gradually in the model at a rate which corresponds to a change in sea level of 10 m per millennium. We have shown that the simulated glacial inception represents a bifurcation transition in the climate system from an interglacial to a glacial state caused by the strong snow-albedo feedback. This transition occurs when summer insolation at high latitudes of the Northern Hemisphere drops below a threshold value, which is only slightly lower than modern summer insolation. By performing long-term equilibrium runs, we find that for the present-day orbital parameters at least two different equilibrium states of the climate system exist—the glacial and the interglacial; however, for the low summer insolation corresponding to 115 kyr BP, we find only one, glacial, equilibrium state, while for the high summer insolation corresponding to 126 kyr BP only an interglacial state exists in the model.

References

  1. Bard E, Hamelin B, Fairbanks RG (1990) U–Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346:456–458CrossRefGoogle Scholar
  2. Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–414CrossRefGoogle Scholar
  3. Berger A (1978) A simple algorithmen to compute long term variations of daily or monthly insolation, Contribution n°18, Institut d’Astronomie et de G’eophysique G. Lemaître, Université catholique de Louvain, Lovain-la-NeuveGoogle Scholar
  4. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles 16(4):1139, DOI:10.1029/2001GB001662Google Scholar
  5. Calov R, Marsiat I (1998) Simulations of the Northern Hemisphere through the last glacial-interglacial cycle with a vertically integrated and a three-dimensional thermomechanical ice sheet model coupled to a climate model. Ann Glaciol 27:169–176Google Scholar
  6. Calov R, Savvin AA, Greve R, Hansen I, Hutter K (1998) Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project. Ann Glaciol 27:201–206Google Scholar
  7. Calov R, Ganopolski A, Petoukhov V, Claussen M, Greve R (2002) Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys Res Lett 29:2216, DOI 10.1029/2002GL016078Google Scholar
  8. Calov R, Ganopolski A, Petoukhov V, Claussen M, Brovkin V, Kubatzki C (2005) Transient simulation of last glacial inception. Part II: sensitivity and feedback analysis. Clim Dyn (this issue)Google Scholar
  9. Chappell J, Omura A, Esat T, McCulloch M, Pandolfi J, Ota Y, Pillans B (1996) Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth Planet Sci Lett 141:227–236CrossRefGoogle Scholar
  10. Claquin T, Roelandt C, Kohfeld KE, Harrison SP, Tegen I, Prentice IC, Balkanski Y, Bergametti G, Hansson M, Mahowald N, Rodhe H, Schulz M (2003) Radiative forcing of climate by ice-age atmospheric dust. Clim Dyn 20:193–202Google Scholar
  11. Clark PU, Clague JJ, Curry BB, Dreimanis A, Hicock SR, Miller GH, Berger GW, Eyles N, Lamothe M, Miller BB, Mott RJ, Oldale RN, Stea RR, Szabo JP, Thorleifson LH, Vincent JS (1993) Initiation and development of the Laurentide and Cordilleran ice sheets following the last interglaciation. Quat Sci Rev 12:79–114CrossRefGoogle Scholar
  12. Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohman G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Zh (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18(7):579–586CrossRefGoogle Scholar
  13. CLIMAP project members (1976) The surface of the ice-age earth. Science 191:1131–1137Google Scholar
  14. Cutler NN, Raymond CF, Waddington ED, Meese DA, Alley RB (1995) The effect of ice-sheet thickness change on the accumulation history inferred from GISP2 layer thicknesses. Ann Glaciol 21:26–32Google Scholar
  15. De Angelis M, Steffensen JP, Legrand M, Clausen H, Hammer C (1997) Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: comparison with east Antarctic records. J Geophys Res 102 (C12):26681–26698Google Scholar
  16. Deblonde G, Peltier WR (1991) Simulations of continental ice sheet growth over the last glacial–interglacial cycle: experiments with a one-level seasonal energy balance model including realistic geography. J Geophys Res 6: 9189–9215CrossRefGoogle Scholar
  17. Deblonde G, Peltier WR (1993) Late Pleistocene ice age scenarios based on observational evidence. J Clim 6:709–727CrossRefGoogle Scholar
  18. deNoblet NI, Prentice IC, Joussaume S, Texier D, Botta A, Haxeltine A (1996) Possible role of atmosphere–biosphere interaction in triggering the last glaciation. Geophys Res Lett 23:3191–3194CrossRefGoogle Scholar
  19. Dong B, Valdes PJ (1995) Sensitivity studies of Northern Hemisphere glaciation using an atmospheric general circulation model. J Clim 8:2471–2496CrossRefGoogle Scholar
  20. Dyke AS, Andrews JT, Clark PU, England JH, Miller GH, Shaw J, Veillette JJ (2002) The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quat Sci Rev 21:9–31CrossRefGoogle Scholar
  21. Flint RF (1971) Glacial and quaternary geology. Wiley, New York, pp 481–484Google Scholar
  22. Fowler AC, Larson DA (1978) On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc R Soc Lond A 363: 217–242CrossRefGoogle Scholar
  23. Gallée H, van Ypersele JP, Fichefet T, Tricot C, Berger A (1991) Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. 1. The climate model. J Geophys Res 96: 13139–13161CrossRefGoogle Scholar
  24. Gallimore RG, Kutzbach JE (1996) Role of orbital induced changes in tundra area in the onset of glaciation. Nature 381:503–505CrossRefGoogle Scholar
  25. Gallup CD, Cheng H, Taylor FW, Edwards RL (2002) Direct determination of the timing of sea level change during termination II. Science 295:310–313CrossRefPubMedGoogle Scholar
  26. Ganopolski A (2003) Integrative glacial modelling. Philos Trans R Soc A 361:1871–1884CrossRefGoogle Scholar
  27. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158CrossRefPubMedGoogle Scholar
  28. Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998a) The influence of vegetation–atmosphere–ocean interaction on climate during the mid-Holocene. Science 280:1916–1919CrossRefPubMedGoogle Scholar
  29. Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M (1998b) Simulation of modern and glacial climates with a coupled model of intermediate complexity. Nature 391:351–356CrossRefGoogle Scholar
  30. Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Petoukhov V, Rahmstorf S (2001) CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity. Clim Dyn 17:735–751CrossRefGoogle Scholar
  31. Greve R (1997a) A continuum-mechanical formulation for shallow polythermal ice sheets. Philos Trans R Soc Lond A 355:921–974CrossRefGoogle Scholar
  32. Greve R (1997b) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J Clim 10:901–918CrossRefGoogle Scholar
  33. Greve R (2000a) On the response of the Greenland ice sheet to greenhouse climate change. Clim Change 46:289–303CrossRefGoogle Scholar
  34. Greve R (2000b) Waxing and waning of the perennial north polar H2O ice cap of Mars over obliquity cycles. Icarus 144:419–431CrossRefGoogle Scholar
  35. Greve R, Weis M, Hutter K (1998) Palaeoclimatic evolution and present conditions of the Greenland ice sheet in the vicinity of Summit: an approach by large-scale modelling. Palaeoclimates 2:133–161Google Scholar
  36. Greve R, Wyrwoll K, Eisenhauer A (1999) Deglaciation of the Northern Hemisphere at the onset of the Eemian and Holocene. Ann Glaciol 28:1–8CrossRefGoogle Scholar
  37. Hutter K (1982) A mathematical model of polythermal glaciers and ice sheets. J Geophys Astrophys Fluid Dyn 21:201–224CrossRefGoogle Scholar
  38. Hutter K (1993) Thermo-mechanically coupled ice-sheet response—cold, polythermal, temperate. J Glaciol 39(131):65–86Google Scholar
  39. Huybrechts P, Letréguilly A, Reeh N (1991) The Greenland ice sheet under greenhouse warming. Palaeogeogr Palaeoclimatol Palaeoecol 89:399–412CrossRefGoogle Scholar
  40. Janssens I, Huybrechts P (2000) The treatment of meltwater retention in mass balance parameterizations of the Greenland ice sheet. Ann Glaciol 31:133–140CrossRefGoogle Scholar
  41. Khodri M, Leclainche Y, Ramstein G, Braconnot P, Marti O, Cortijo E (2001) Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410:570–574CrossRefPubMedGoogle Scholar
  42. Kubatzki C, Montoya M, Rahmstorf S, Ganopolski A, Claussen M (2000) Comparison of a coupled global model of intermediate complexity and an AOGCM for the last interglacial. Clim Dyn 16:799–814CrossRefGoogle Scholar
  43. Lambeck K and Chappell J (2001) Sea level changes through the last glacial cycle. Science 292: 679–686CrossRefPubMedGoogle Scholar
  44. Le Meur E, Huybrechts P (1996) A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle. Ann Glaciol 23:309–317Google Scholar
  45. Lee WHK (1970) On the global variations of the terrestrial heat flow. Phys Planet Earth Planet Inter 2:332–341CrossRefGoogle Scholar
  46. Letréguilly A, Huybrechts P, Reeh N (1991) Steady state characteristics of the Greenland ice sheet under different climates. J Glaciol 37:149–157Google Scholar
  47. Liljequist GH, Cehak K (1974) Allgemeine Meteorologie. Vieweg, BraunschweigGoogle Scholar
  48. Mahowald N, Kohfeld KE, Hansson M, Balkanski Y, Harrison SP, Prentice IC, Schulz M, Rodhe H (1999) Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res 104:15895–15916CrossRefGoogle Scholar
  49. Marshall S, Clarke GKC (1999) Ice sheet inception: subgrid hysometric parameterizations of mass balance in an ice sheet model. Clim Dyn 15:533–550CrossRefGoogle Scholar
  50. Marsiat I (1994) Simulation of the Northern Hemisphere continental ice sheets over the last glacial–interglacial cycle: experiments with a latitude–longitude vertically integrated ice-sheet model coupled to zonally averaged climate model. Palaeoclimates 1:59–98Google Scholar
  51. McAvaney BJ, Covey C, Joussaume S, Kattsov V, Kitoh A, Ogana W, Pitman AJ, Weaver AJ, Wood RA, Zhao Z-C (2001) Model evaluation, chap 8. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. IPCC TAR, Cambridge University Press, pp 471–523Google Scholar
  52. Meissner KJ, Weaver AJ, Matthews HD, Cox PM (2003) The role of land surface dynamics in glacial inception: a study with the UVic Earth system model. Clim Dyn 21(7–8):515–537CrossRefGoogle Scholar
  53. Mitchell JFB (1993) Modeling of paleoclimates: examples from the recent past. Philos Trans R Soc Lond B 341:267–275CrossRefGoogle Scholar
  54. North GR (1984) The small ice cap instability in diffusive climate models. J Atmos Sci 41(23): 3390–3395CrossRefGoogle Scholar
  55. Ohmura A (1987) New temperature distribution map for Greenland. Z Gletscherkunde Glazialgeol 23(1):1–45Google Scholar
  56. Ohmura A, Reeh N (1991) New precipitation and accumulation maps for Greenland. J Glaciol 37(125):140–148Google Scholar
  57. Paterson WSB (1991) Why ice-age ice is sometimes ‘soft’. Cold Reg Sci Technol 20:75–98CrossRefGoogle Scholar
  58. Peltier WR (1994) Ice age paleotopography. Science 265:195–201CrossRefGoogle Scholar
  59. Peltier WR, Marshall S (1995) Coupled energy-balance/ice-sheet model simulations of the glacial cycle: a possible connection between terminations and terrigenous dust. J Geophys Res 100:14267–14289CrossRefGoogle Scholar
  60. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436CrossRefGoogle Scholar
  61. Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki C, Rahmstorf S (2000) CLIMBER-2: a climate system model of intermediate complexity, Part I: model description and performance for present climate. Clim Dyn 16:1–17CrossRefGoogle Scholar
  62. Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280CrossRefGoogle Scholar
  63. Pollard D (2000) Comparisons of ice-sheet surface mass budgets from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Global Planet Change 24:79–106CrossRefGoogle Scholar
  64. Pollard D, Thompson SL (1997) Driving a high-resolution dynamic ice-sheet model with GCM climate: ice-sheet initiation at 116 000 BP. Ann Glaciol 25:296–304Google Scholar
  65. Reeh N (1989) Parameterization of melt rate and surface temperature of the Greenland ice sheet. Polarforschung 59(3):113–128Google Scholar
  66. Reeh N, Mayer C, Miller H, Højmark Thomsen H, Weidick A (1999) Present and past climate control on fjord glaciations in Greenland: implications for IRD-deposition in the sea. Geophs Res Lett 26(8): 1039–1042CrossRefGoogle Scholar
  67. Rind D, Peteet D, Kukla G (1989) Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model? J Geophys Res 94:12851–12871CrossRefGoogle Scholar
  68. Rosell-Melé A, Bard E, Kay-Christian E, Grieger B, Hewitt C, Müller PJ, Schneider RR (2004) See surface temperature anomalies in the oceans at the LGM estimated from alkenone-UK' 37 index: comparison with GCMs. Geophys Res Lett 31:L03208, DOI: 10.1029/2003GL018151Google Scholar
  69. Royer JF, Deque M, Pestiaux P (1983) Orbital forcing of the inception of the Laurentide ice sheet. Nature 304:43–46CrossRefGoogle Scholar
  70. Savvin AA, Greve R, Calov R, Mügge B, Hutter K (2000) Simulation of the Antarctic ice sheet with a three-dimensional polythermal ice-sheet model, in support of the EPICA project. II. Nested high-resolution treatment of Dronning Maud Land, Antarctica. Ann Glaciol 30:69–75CrossRefGoogle Scholar
  71. Schlesinger ME, Verbitski M (1996) Simulation of glacial onset with a coupled atmospheric general circulation/mixed-layer ocean-ice sheet/asthenosphere model. Palaeoclimates 2:179–201Google Scholar
  72. Svendsen JI, Astakhov VI, Bolshiyanov DYU, Demidov I, Dowdeswell JA, Gataullin V, Hjort C, Hubberten HW, Larsen E, Mangerud J, Melles M, Möller P, Saarnisto M, Siegert MJ (1999) Maximum extent of the Eurasian ice sheets in the Barents and Kara sea region during the Weichselian. Boreas 28:234–242CrossRefGoogle Scholar
  73. Tarasov L, Peltier WR (1997) Terminating the 100 kyr ice age cycle. J Geophys Res 102:21665–21693CrossRefGoogle Scholar
  74. Tarasov L, Peltier WR (1999) Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle. J Geophys Res 104:9517–9545CrossRefGoogle Scholar
  75. Vavrus SJ (1999) The response of the coupled arctic sea ice-atmosphere system to orbital forcing and ice motion at 6 kyr and 115 kyr BP. J Clim 12:873–896CrossRefGoogle Scholar
  76. Vettoretti G, Peltier WR (2003a) Post-Eemian glacial inception. Part I: The impact of summer seasonal temperature bias. J Climate 16:889–911CrossRefGoogle Scholar
  77. Vettoretti G, Peltier WR (2003b) Post-Eemian glacial inception. Part II: elements of a cryospheric moisture pump. J Climate 16:912–927CrossRefGoogle Scholar
  78. Wang Z, Mysak LA (2002) Simulation of the last glacial inception and rapid ice sheet growth in the McGill Paleoclimate Model. Geophys Res Lett 29:2102, DOI: 10.1029/2002GL015120Google Scholar
  79. Warren SG, Wiscombe WJ (1980) A model for the spectral albedo of snow. II: snow containing atmospheric aerosol. J Atmos Sci 37:2734–2745CrossRefGoogle Scholar
  80. Weertman J (1964) Rate of growth or shrinkage of nonequilibrium ice sheets. J Glaciol 5:145–158Google Scholar
  81. Weidick A (1985) Review of glacier changes in West Greenland. Z Gletscherkunde Glazialgeol 21:301–309Google Scholar
  82. Yoshimori M, Reader MC, Weaver AJ, McFarlane NA (2002) On the causes of glacial inception at 116 ka BP. Clim Dyn 18 (5):383–402CrossRefGoogle Scholar
  83. Zou Z, Oerlemans J (1997) Contribution of glacier melt to sea-level rise since AD 1865: a regionally differential calculation. Clim Dyn 13(12):835–845CrossRefGoogle Scholar
  84. Zwally HJ, Giovinetto MB (2000) Spatial distribution of net surface mass balance on Greenland. Ann Glaciol 31:126–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Reinhard Calov
    • 1
  • Andrey Ganopolski
    • 1
  • Martin Claussen
    • 1
  • Vladimir Petoukhov
    • 1
  • Ralf Greve
    • 2
    • 3
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Institute of Low Temperature ScienceHokkaido UniversityKita-kuJapan
  3. 3.Department of MechanicsDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations