Climate Dynamics

, Volume 24, Issue 7–8, pp 823–842

Mechanisms of tropical Pacific interannual-to-decadal variability in the ARPEGE/ORCA global coupled model

  • Carole Cibot
  • Eric Maisonnave
  • Laurent Terray
  • Boris Dewitte
Article

Abstract

Spatial and temporal structures of interannual-to-decadal variability in the tropical Pacific Ocean are investigated using results from a global atmosphere–ocean coupled general circulation model. The model produces quite realistic mean state characteristics, despite a sea surface temperature cold bias and a thermocline that is shallower than observations in the western Pacific. The periodicity and spatial patterns of the modelled El Niño Southern Oscillations (ENSO) compare well with those observed over the last 100 years, although the quasi-biennial timescale is dominant. Lag-regression analysis between the mean zonal wind stress and the 20°C isotherm depth suggests that the recently proposed recharge-oscillator paradigm is operating in the model. Decadal thermocline variability is characterized by enhanced variance over the western tropical South Pacific (~7°S). The associated subsurface temperature variability is primarily due to adiabatic displacements of the thermocline as a whole, arising from Ekman pumping anomalies located in the central Pacific, south of the equator. Related wind anomalies appear to be caused by SST anomalies in the eastern equatorial Pacific. This quasi-decadal variability has a timescale between 8 years and 20 years. The relationship between this decadal tropical mode and the low-frequency modulation of ENSO variance is also discussed. Results question the commonly accepted hypothesis that the low-frequency modulation of ENSO is due to decadal changes of the mean state characteristics.

References

  1. Achuta Rao K, Sperber K (2002) Simulation of the El Niño Southern Oscillation: results from the Coupled Model Intercomparison Project (CMIP). Clim Dyn 19:191–209CrossRefGoogle Scholar
  2. An SI, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  3. Antonov J, Levitus S, Boyer TP, Conkright M, O‘ Brien T, Stephens C (1998) World ocean atlas 1998, vol 2: temperature of the Pacific Ocean. NOAA Atlas NESDIS 28, 166 ppGoogle Scholar
  4. Barnett TP, Pierce DW, Saravanan R, Schneider N, Dommenget D, Latif M (1999a) Origins of the mid-latitude Pacific decadal variability. Geophys Res Lett 26:1453–1456CrossRefGoogle Scholar
  5. Barnett TP, Pierce D, Latif M, Dommenget D, Saravanan R (1999b) Interdecadal interactions between the tropics and midlatitudes in the Pacific Basin. Geophys Res Lett 26:615–619CrossRefGoogle Scholar
  6. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  7. Bougeault P (1985) A simple parameterization of the large-scale effects of deep cumulus convection. Mon Wea Rev 113:2108–2121CrossRefGoogle Scholar
  8. Boyer TP, Levitus S, Antonov J, Conkright M, O’ Brien T, Stephens C (1998) World ocean atlas 1998, vol 5: salinity of the Pacific Ocean. NOAA Atlas NESDIS 31, 166 ppGoogle Scholar
  9. Capotondi A, Alexander MA (2001) Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. J Phys Oceanogr 31:3496–3515CrossRefGoogle Scholar
  10. Chelton DB (1983) Effects of sampling errors in statistical estimation. Deep Sea Res 30:1083–1101CrossRefGoogle Scholar
  11. Christoph M, Ulbrich U, Haak U (1995) Faster determination of the intraseasonal variability of storm tracks using Murakami’s recursive filter. Mon Wea Rev 123:578–581CrossRefGoogle Scholar
  12. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Clim Dyn 10:249–266CrossRefGoogle Scholar
  13. Douville H (1998) Validation and sensitivity of the global hydrologic budget in stand-alone simulations with the ISBA land surface scheme. Clim Dyn 14:151–171CrossRefGoogle Scholar
  14. Emery WJ, Thomson RE (2001) Data analysis methods in physical oceanography, 2nd revised edn. Elsevier, Amsterdam, p 638Google Scholar
  15. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609–12646CrossRefGoogle Scholar
  16. Goddard L, Graham NE (1997) El Niño in the 1990s. J Geophys Res 102:10423–10436CrossRefGoogle Scholar
  17. Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807CrossRefPubMedMathSciNetGoogle Scholar
  18. Jackett DR, McDougall TJ (1995) A neutral density variable for the world’s oceans. J Phys Oceanogr 27:237–263CrossRefGoogle Scholar
  19. Ji M, Leetmaa A, Kousky VE (1996) Coupled model predictions of ENSO during the 1980s and the 1990s at the National Centers for Environmental Prediction. J Clim 9:3105–3120CrossRefGoogle Scholar
  20. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  21. Jin FF, An SI, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30(3):1120. DOI:10.1029/2002GL016356Google Scholar
  22. Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822CrossRefGoogle Scholar
  23. Kleeman R, McCreary JP, Klinger B (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26:1743–1746CrossRefGoogle Scholar
  24. Knutson TR, Manabe S (1998) Model assessment of decadal variability and trends in the tropical Pacific Ocean. J Clim 11:2273–2296CrossRefGoogle Scholar
  25. Knutson TR, Manabe S, Gu D (1997) Simulated ENSO in a global coupled ocean–atmosphere model. Multidecadal amplitude modulation and CO2 sensitivity. J Clim 10:138–161CrossRefGoogle Scholar
  26. Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Science 266:634–637CrossRefGoogle Scholar
  27. Latif M, Kleeman R, Eckert C (1997) Greenhouse warming, decadal variability, or El Niño: an attempt to understand the anomalous 1990’s. J Clim 10:2221–2239CrossRefGoogle Scholar
  28. Liu Z, Philander SGH, Pacanowski RC (1994) A GCM study of the tropical-subtropical upper-ocean water exchange. J Phys Oceanogr 24:2606–2623CrossRefGoogle Scholar
  29. Louis JF, Tiedke M, Geleyn JF (1982) A short history of the operational PBL parameterization at ECMWF. In: Proceedings of the ECMWF workshop on planetary boundary layer parameterization, ECMWF, Reading, pp 59–80Google Scholar
  30. Luo J, Yamagata T (2001) Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J Geophys Res 106:22211–22227CrossRefGoogle Scholar
  31. Lysne J, Chang P, Giese B (1997) Impact of the extratropical Pacific on equatorial variability. Geophys Res Lett 24:2589–2592CrossRefGoogle Scholar
  32. Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace, no 11, 91 ppGoogle Scholar
  33. McCreary JP, Lu P (1994) Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J Phys Oceanogr 24:466–497Google Scholar
  34. Meehl GA, Gent P, Arblaster JM, Otto-Bliesner BL, Brady E, Craig AP (2001) Factors that affect amplitude of El Niño in global coupled climate models. Clim Dyn 17:515–526CrossRefGoogle Scholar
  35. Montecinos A, Purca S, Pizarro O (2003) Interannual-to-interdecadal sea surface temperature variability along the western coast of South America. Geophys Res Lett 30(11):1570. DOI:10.1029/2003GL017345Google Scholar
  36. Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Wea Rev 118:847–873CrossRefGoogle Scholar
  37. Murakami M (1979) Large-scale aspects of deep convective activity over the GATE area. Mon Wea Rev 107:994–1013CrossRefGoogle Scholar
  38. Nonaka M, Xie S-P (2000) Propagation of North Pacific interdecadal subsurface temperature anomalies in an ocean GCM. Geophys Res Lett 27:3747–3750CrossRefGoogle Scholar
  39. Pierce DW, Barnett TP, Latif M (2000) Connections between the Pacific Ocean tropics and midlatitudes on decadal time-scales. J Clim 13:1173–1194CrossRefGoogle Scholar
  40. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Wea Rea 110:354–384CrossRefGoogle Scholar
  41. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. DOI:10.1029/2002JD002670Google Scholar
  42. Rodgers K, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17(19):3761–3774CrossRefGoogle Scholar
  43. Roullet G, Madec G (2000) Salt conservation, free surface and varying volume: a new formulation for Ocean GCMs. J Geophys Res 105:23927–23942CrossRefGoogle Scholar
  44. Schneider N (2000) A decadal spiciness mode in the tropics. Geophys Res Lett 27:257–260CrossRefGoogle Scholar
  45. Schneider N, Miller AJ, Alexander MA, Deser C (1999) Subduction of decadal North Pacific temperature anomalies: observations and dynamics. J Phys Oceanogr 29:1056–1070CrossRefGoogle Scholar
  46. Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 227:1956–1962CrossRefGoogle Scholar
  47. Terray L (1998) Sensitivity of climate drift to atmospheric physical parameterizations in a coupled ocean–atmosphere general circulation model. J Clim 11:1633–1658CrossRefGoogle Scholar
  48. Timmerman A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697CrossRefGoogle Scholar
  49. Timmermann A (2003) Decadal ENSO amplitude modulations: a nonlinear paradigm. Global Planet Change 37(1):135–156CrossRefGoogle Scholar
  50. Timmermann A., Jin F-F (2002) A nonlinear mechanism for decadal El Niño amplitude changes. Geophys Res Lett 29. DOI: 10.1029/2001GL013369Google Scholar
  51. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Amer Meteorol Soc 79:61–78CrossRefGoogle Scholar
  52. Torrence T, Webster PJ (1998) Interdecadal changes in the ENSO-Monsoon System. J Clim 12:2679–2690CrossRefGoogle Scholar
  53. Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–318CrossRefGoogle Scholar
  54. Valcke S, Terray L, Piacentini A (2000) The OASIS coupled user guide version 2.4. Technical report no. TR/CMGC/00-10, CERFACS, 85 ppGoogle Scholar
  55. Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Clim 8:267–285CrossRefGoogle Scholar
  56. Wang B, An SI (2001) Why the properties of El Niño changed during the late 1970s. Geophys Res Lett 28(19):3709–3712CrossRefGoogle Scholar
  57. White WB, Tourre YM, Barlow M, Dettinger M (2003) A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific Basin. J Geophys Res 108(C3):3070. DOI: 10.1029/2002JC001490Google Scholar
  58. Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Wea Rev 115:2262–2278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Carole Cibot
    • 1
  • Eric Maisonnave
    • 1
  • Laurent Terray
    • 1
  • Boris Dewitte
    • 2
  1. 1.Sciences de l’Univers au CERFACSCERFACS/CNRS URA 1875Toulouse Cedex 1France
  2. 2.Laboratoire d’Etude en Géophysique et Océanographie SpatialeIRD - Centre de NouméaNouméa CedexFrance

Personalised recommendations