Climate Dynamics

, Volume 24, Issue 7–8, pp 809–822 | Cite as

Recurrent climate winter regimes in reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic/European sector 1659–1990

  • C. Casty
  • D. Handorf
  • C. C. Raible
  • J. F. González-Rouco
  • A. Weisheimer
  • E. Xoplaki
  • J. Luterbacher
  • K. Dethloff
  • H. Wanner


Recurrent climate winter regimes are examined from statistically reconstructed and modelled 500 hPa geopotential height fields over the North Atlantic/European sector for the period 1659–1990. We investigate the probability density function of the state space spanned by the first two empirical orthogonal functions of combined winter data. Regimes are detected as patterns that correspond to areas of the state space with an unexpected high recurrence probability using a Monte Carlo approach. The reconstruction and the model reveal four recurrent climate regimes. They correspond to the two phases of the North Atlantic Oscillation and two opposite blocking patterns. Complemented by the investigation of the temporal evolution of the climate regimes this leads to the conclusion that the reconstructed and the modelled data for this geographic sector reproduce low-frequency atmospheric variability in the form of regime-like behaviour. The overall evidence for recurrent climate regimes is higher for the model than for the reconstruction. However, comparisons with independent data sources for the period 1659–1990 revealed a more realistic temporal evolution of the regimes for the reconstructed data.


Monte Carlo Geopotential Height Climate Regime Reconstructed Data NCEP Reanalysis 



The authors would like to thank the members of the group “Modelle und Daten” (M&D) at the Max Planck Institute for Meteorology (MPI), Hamburg, Germany, for providing the data of the model simulation. Luterbacher et al. (2002) reconstructed 500 hPa geopotential height fields which can be downloaded from the NOAA Paleoclimatology World Data Center (WDC), The software for wavelet calculation is provided by Torrence and Compo (1998) available at: This work is supported by the National Center for Competence in Research (NCCR) in Climate by the Swiss Science Foundation and by the EU project GLIMPSE (Global Implications of Arctic climate processes and feedbacks). Dr. E. Xoplaki was partially supported by the Fifth Framework Programme of the European Union (project SOAP). We also thank the two anonymous reviewers for their comments that helped to improve the manuscript.

Supplementary material


  1. Barnston AG, Lizevey RE (1987) Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126CrossRefGoogle Scholar
  2. Baur F, Hess P, Nagel H (1944) Kalender der Grosswetterlagen Europas 1881–1939. Bad HomburgGoogle Scholar
  3. Blunier T, Chappellaz J, Schwander J, Stauffer B, Raynaud D (1995) Variations in atmospheric methane concentration during the Holocene epoch. Nature 374:46–49CrossRefGoogle Scholar
  4. Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: spatial asymmetry, stationarity with time and oceanic forcing. J Climate 17:1055–1068CrossRefGoogle Scholar
  5. Charney JG, DeVore JG (1979) Multiple flow equilibria in the atmosphere and blocking. J Atmos Sci 36:1205–1216CrossRefGoogle Scholar
  6. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology – a review and comparison of two techniques. Int J Climatol 14:379–402CrossRefGoogle Scholar
  7. Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802CrossRefGoogle Scholar
  8. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefPubMedGoogle Scholar
  9. DeSwart HE (1988) Vacillation and predictability properties of low-order atmospheric spectral models. PhD thesis, Utrecht University, The NetherlandsGoogle Scholar
  10. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101:4115–4128CrossRefGoogle Scholar
  11. Exner FM (1924) Monatliche Luftdruck- und Temperaturanomalien auf der Erde. Sitzungsberichte d Kaiserl Akad der Wissenschaften 133:307–408Google Scholar
  12. Glaser R, Brázdil R, Pfister C, Dobrovólny P, Barriendos Vallvé M, Bokwa A, Camuffo D, Kotyza O, Limanówka D, Rácz L, Rodrigo FS (1999) Seasonal temperature and precipitation fluctuations in selected parts of Europe during the sixteenth century. Clim Change 43:169–200CrossRefGoogle Scholar
  13. Handorf D, Petoukhov VK, Dethloff K, Eliseev AV, Weisheimer A, Mokhov II (1999) Decadal climate variability in a coupled atmosphere-ocean climate model of moderate complexity. J Geophys Res 104:27253–27276CrossRefGoogle Scholar
  14. Handorf D, Dorn W, Dethloff K, Rinke A, Weisheimer A (2004) Internal climate variability in global and regional climate models. In: Fischer H, Kumke T, Lohmann G, Flöser G, Miller H, von Storch H, Negendank JFW (eds) The KIHZ project: towards a synthesis of Holocene proxy data and climate models. Springer, Berlin Heidelberg New York, pp 365–382Google Scholar
  15. Hannachi A (1997) Low-frequency variability in a GCM: three-dimensional flow regimes and their dynamics. J Climate 10:1357–1379CrossRefGoogle Scholar
  16. Hasselmann K (1999) Climate change–linear and nonlinear signatures. Nature 398:755–756CrossRefGoogle Scholar
  17. Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92CrossRefPubMedGoogle Scholar
  18. Hsu CJ, Zwiers F (2001) Climate change in recurrent regimes and modes of Northern Hemisphere atmospheric variability. J Geophys Res 106:20145–20159CrossRefGoogle Scholar
  19. Hurrell JW, van Loon H (1997) Decadal Variations associated with the North Atlantic Oscillation. Clim Change 36:301–326CrossRefGoogle Scholar
  20. Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part 1: assessing determinism. Clim Dyn. 23:371-389CrossRefGoogle Scholar
  21. Kalnay E et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project. B Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  22. Kimoto M, Ghil M (1993a) Multiple flow regimes in the Northern Hemisphere winter. Part I: methodology and hemispheric regimes. J Atmos Sci 50:2625–2643CrossRefGoogle Scholar
  23. Kimoto M, Ghil M (1993b) Multiple flow regimes in the Northern Hemisphere winter. Part II: sectorial regimes and preferred transitions. J Atmos Sci 50:2645–2673CrossRefGoogle Scholar
  24. Kistler R et al. (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. B Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  25. Klein WH, Dai Y (1998) Reconstruction of monthly mean 700-mb heights from surface data by reverse specification. J Climate 11:2136–2146Google Scholar
  26. Kosloswki G, Glaser R (1999) Variations in reconstructed ice winter severity in the Western Baltic from 1501–1995, and their implications for the North Atlantic Oscillation. Clim Change 41:175–191CrossRefGoogle Scholar
  27. Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35:385CrossRefGoogle Scholar
  28. Legras B, Ghil M (1985) Persistent anomalies, blocking, and variations in atmospheric predictability. J Atmos Sci 42:433–471CrossRefGoogle Scholar
  29. Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled circulation model ECHO-G. DKRZ Tech Rep 18, DKRZ, Hamburg, Germany, pp 74Google Scholar
  30. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  31. Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The late maunder minimum (1675–1715) – a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462CrossRefGoogle Scholar
  32. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  33. Mo K, Ghil M (1988) Cluster analysis of multiple planetary flow regimes. J Geophys Res 93:10927–10952CrossRefGoogle Scholar
  34. Molteni F, Sutera A, Tronci N (1988) The EOFs of the geopotential eddies at 500 mb in winter and their probability density function. J Atmos Sci 45:3063–3080CrossRefGoogle Scholar
  35. Monahan AH, Fyfe, JC, Flato, GM (2000) Northern Hemisphere atmospheric variability and change under global warming. Geophys Res Lett 27:1139–1142CrossRefGoogle Scholar
  36. Monahan AH, Pandolfo L, Fyfe JC (2001) The preferred structure of variability of the Northern Hemisphere atmospheric circulation. Geophys Res Lett 28:1019–1022CrossRefGoogle Scholar
  37. North G, Bell T, Cahalan R, Moeng F (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706CrossRefGoogle Scholar
  38. Palmer TN (1993) Extended-range atmospheric prediction and the Lorenz model. B Am Meteorol Soc 74:49–65CrossRefGoogle Scholar
  39. Palmer TN (1999) A nonlinear dynamical perspective on climate prediction. J Climate 12:575–591CrossRefGoogle Scholar
  40. Pfister C (1999) Wetternachhersage. Haupt, Bern Stuttgart WienGoogle Scholar
  41. Raible CC, Luksch U, Fraedrich K, Voss R (2001) North Atlantic decadal regimes in a coupled GCM simulation. Clim Dyn 18:321–330CrossRefGoogle Scholar
  42. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. MPI Rep 218, Max Planck Institute for Meteorology, HamburgGoogle Scholar
  43. Rossby CG (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55Google Scholar
  44. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New YorkGoogle Scholar
  45. Slonosky VC, Jones PD, Davies TD (2000) Variability of the surface atmospheric circulation over Europe, 1774–1995. Int J Climatol 20: 1875–1897CrossRefGoogle Scholar
  46. Stephenson DB, Hannachi A, O’Neill A (2004) On the existence of multiple climate regimes. Quat J Roy Meteor Soc 130:583–606CrossRefGoogle Scholar
  47. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  48. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  49. Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Wea Rev 118:2056–2081CrossRefGoogle Scholar
  50. Walker GT (1924) Correlation in seasonal variation of weather, IX. Mem Ind Met Dept 25:275–332Google Scholar
  51. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during Northern Hemisphere winter. Mon Wea Rev 109:784–812CrossRefGoogle Scholar
  52. Wanner H, Pfister C, Brázdil R, Frich P, Frydendahl K, Jónsson T, Kington J, Lamb HH, Rosenørn S, Wishman E (1995) Wintertime European circulation patterns during the Late Maunder Minimum cooling period (1675–1704). Theor Appl Climatol 58:159–165Google Scholar
  53. Weisheimer A, Handorf D, Dethloff K (2001) On the structure and variability of atmospheric circulation regimes in coupled climate models. Atmos Sci Lett 2:72–80CrossRefGoogle Scholar
  54. Wolff JO, Maier-Reimer E, Legutke S (1997) The Hamburg ocean primitive equation model. DKRZ Tech Rep 13, DKRZ, HamburgGoogle Scholar
  55. Yang S, Reinhold B (1991) How does the low-frequency variance vary? Mon Wea Rev 119:119–127CrossRefGoogle Scholar
  56. Zorita E, González-Rouco JF (2002) Are temperature sensitive proxies adequate for North Atlantic Oscillation reconstructions? Geophys Res Lett 29, DOI 10.1029/2002GL015404Google Scholar
  57. Zorita E, von Storch H, González-Rouco JF, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteor Z 13:271–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • C. Casty
    • 1
    • 2
  • D. Handorf
    • 3
  • C. C. Raible
    • 4
  • J. F. González-Rouco
    • 5
  • A. Weisheimer
    • 6
  • E. Xoplaki
    • 1
    • 2
  • J. Luterbacher
    • 1
    • 2
  • K. Dethloff
    • 3
  • H. Wanner
    • 1
    • 2
  1. 1.Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.NCCR ClimateUniversity of BernSwitzerland
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  4. 4.Climate and Environmental PhysicsUniversity of BernSwitzerland
  5. 5.Department of Astrophysics and Atmospheric SciencesUniversity of MadridSpain
  6. 6.Institute of MeteorologyFree University of BerlinGermany

Personalised recommendations