Climate Dynamics

, Volume 23, Issue 7–8, pp 779–789 | Cite as

Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation in atmospheric GCM simulations of the 1930–1989 period

  • Johannes Quaas
  • Olivier Boucher
  • Jean-Louis Dufresne
  • Hervé Le Treut
Article

Abstract

Among anthropogenic perturbations of the Earth’s atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day−1 decade−1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative.

Notes

Acknowledgements

The SST and sea ice extent data were provided by Dr. Nick Rayner of the Hadley Centre. GHG concentration data are from Dr. Gunnar Myhre of the Department for Geophysics, University of Oslo. Computer time was provided by Institut de Développement et des Resources en Informatique Scientifique (IDRIS) of the CNRS. We thank Dr. Zhao-Xin Li for many helpful discussions.

References

  1. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230Google Scholar
  2. Boucher O, Anderson TL (1995) General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J Geophys Res 100:26117–26134CrossRefGoogle Scholar
  3. Boucher O, Haywood J (2001) On summing the components of radiative forcing of climate change. Clim Dyn 18:297–302CrossRefGoogle Scholar
  4. Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect—a sensitivity study with two general circulation models. Tellus 47B:281–300CrossRefGoogle Scholar
  5. Boucher O, Pham M (2001) History of sulfate aerosol radiative forcings. Geoph Res Lett 29:1308. DOI 1029/2001GL014048Google Scholar
  6. Boucher O, Le Treut H, Baker MB (1995) Precipitation and radiation modeling in a general circulation model: introduction of cloud microphysical processes. J Geophys Res 100:16395–16414CrossRefGoogle Scholar
  7. Boucher O, Pham M, Venkataraman C (2002) Simulation of the atmospheric sulfur cycle in the Laboratoire de Météorologie Dynamique general circulation model. Model description, model evaluation, and global and European budgets. In: Boulanger J-P, Li Z-X (eds) Note scientifique de l’IPSL 23. IPSL, ParisGoogle Scholar
  8. Brenguier J-L, Chuang P, Fouquart Y, Johnson DW, Parol F, Pawlowska H, Pelon J, Schüller L, Schröder F, Snider J (2000) An overview of the ACE-2 CLOUDYCOLUMN closure experiment. Tellus 52B:815–827CrossRefGoogle Scholar
  9. Bréon F-M, Tanré D, Generoso S (2002) Aerosol effect on cloud droplet size monitored from satellite. Science 295:834–838CrossRefPubMedGoogle Scholar
  10. Cess RD, Zhang M-H, Potter GL, Barker HW, Colman RA, Dazlich DA, DelGenio AD, Esch M, Fraser JR, Galin V, Gates W, Hack JJ, Ingram JW, Kieht JT, Lacis AA, Le Treut H, Li Z-X, Liang X-Z, Mahfouf J-F, McAvaney BJ, Meleshko VP, Morcrett J-J, Randall DA, Roeckner E, Royer J-F, Sokolov AP, Sporyshev PV, Taylor KE, Wang W-C, Wetherald RT (1993) Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models. Science 262:1252–1255Google Scholar
  11. Charlson RJ, Lovelock JE, Andrae MO, Warren SG (1989) Sulphate aerosols and climate. Nature 340:437–438CrossRefGoogle Scholar
  12. Coakley JA Jr, Bernstein RL, Durkee PA (1987) Effect of ship-track effluents on cloud reflectivity. Science 237:1020–1022Google Scholar
  13. Folland CK, Karl TR, Christy RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wand S-W (2001) Oberved climate variability and climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson DJ (eds) Climate change 2001—the scientific basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 99–182Google Scholar
  14. Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parameterization. Cont Atmos Phys 53:35–62Google Scholar
  15. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  16. Kaufman YJ, Nakajima T (1993) Effect of Amazon smoke on cloud microphysics and albedo—analysis from satellite imagery. J Appl Meteorol 32:729–744CrossRefGoogle Scholar
  17. Le Treut H, Li X-Z (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim Dyn 5:175–187Google Scholar
  18. Le Treut H, Forichon M, Boucher O, Li Z-X (1998) Sulfate aerosol indirect effect and CO2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks. J Clim 11:1673–1684CrossRefGoogle Scholar
  19. Li Z-X (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  20. McAvaney BJ, Covey C, Joussaume S, Kattsov V, Kitoh A, Ogana W, Pitman AJ, Weaver AJ, Wood RA, Zhao Z-C (2001) Model evaluation. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson DJ (eds) Climate change 2001—the scientific basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 471–524Google Scholar
  21. Mitchell JFB, Karoly DJ, Hegerl GC, Zwiers FW, Allen MR, Marengo J (2001) Detection of climate change and attribution of causes. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson DJ (eds) Climate change 2001—the scientific basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 695–738Google Scholar
  22. Morcrette J-J (1991) Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature. Mon Wea Rev 119:1205–1224CrossRefGoogle Scholar
  23. Myhre G, Myhre A, Stordal F (2001) Historical evolution of radiative forcing of climate. Atmos Environ 35:2361–2373CrossRefGoogle Scholar
  24. Pontikis CA, Hicks EM (1993) Droplet activation as related to entrainment and mixing in warm tropical marine clouds. J Atmos Sci 50:1888–1896CrossRefGoogle Scholar
  25. Ramanathan, Crutzen P, Lelieveld J, Mitra AP, Althausen D, Anderson J, Andrae MO, Cantrell W, Cass GR, Chung CE, Clarke AD, Coakley JA Jr, Collins WA, Conant WC, Dulac F, Heintzenberg BJ, Heymsfield AJ, Holben B, Howell S, Hudson CJ, Jayaraman A, Kiehl JT, Krishnamurti TN, Lubin DD, McFarquhar G, Novakov T, Ogren J, Poddorny EIA, Prather K, Priestly K, Prospero JM, Quinn FPK, Pajeev K, Rasch P, Rupert S, Sadourny R, Satheesh GSK, Shaw GE, Sheridan P, Valero FPJ (2001) Indian ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106:28371–28398CrossRefGoogle Scholar
  26. Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson DJ (eds) Climate change 2001—the scientific basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 349–416Google Scholar
  27. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. DOI 10.1029/2002JD002670CrossRefGoogle Scholar
  28. Rosenfeld D (2000) Suppression of rain and snow by rban and industrial air pollution. Science 287:1793–1796CrossRefPubMedGoogle Scholar
  29. Rotstayn LD, Penner JE (2001) Indirect aerosol forcing, quasi-forcing and climate response. J Clim 14:2960–2975CrossRefGoogle Scholar
  30. Sexton DMH, Grubb H, Shine KP, Folland CK (2003) Design and analysis of climate model experiments for the efficient estimation of anthropogenic signals. J Clim 16:1320–1336Google Scholar
  31. Stephens GL (1978) Radiation profiles in extended water clouds. II: parameterization schemes. J Atmos Sci 35:2123–2132CrossRefGoogle Scholar
  32. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1779–1800CrossRefGoogle Scholar
  33. Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256CrossRefGoogle Scholar
  34. Wigley TML (1989) Possible climate change due to SO2-derived cloud condensation nuclei. Nature 339:365–367CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Johannes Quaas
    • 1
  • Olivier Boucher
    • 2
  • Jean-Louis Dufresne
    • 1
  • Hervé Le Treut
    • 1
  1. 1.Laboratoire de Météorologie DynamiqueIPSL/C.N.R.S.ParisFrance
  2. 2.Laboratoire d’Optique AtmosphériqueUnversité de Lille/C.N.R.S.Villeneuve d’AscqFrance

Personalised recommendations