Climate Dynamics

, Volume 23, Issue 7–8, pp 679–694 | Cite as

Effects of a melted greenland ice sheet on climate, vegetation, and the cryosphere

  • Daniel J. Lunt
  • Nathalie de Noblet-Ducoudré
  • Sylvie Charbit


This paper investigates the possible implications for the earth-system of a melting of the Greenland ice-sheet. Such a melting is a possible result of increased high latitude temperatures due to increasing anthropogenic greenhouse gas emissions. Using an atmosphere-ocean general circulation model (AOGCM), we investigate the effects of the removal of the ice sheet on atmospheric temperatures, circulation, and precipitation. We find that locally over Greenland, there is a warming associated directly with the altitude change in winter, and the altitude and albedo change in summer. Outside of Greenland, the largest signal is a cooling over the Barents sea in winter. We attribute this cooling to a decrease in poleward heat transport in the region due to changes to the time mean circulation and eddies, and interaction with sea-ice. The simulated climate is used to force a vegetation model and an ice-sheet model. We find that the Greenland climate in the absence of an ice sheet supports the growth of trees in southern Greenland, and grass in central Greenland. We find that the ice sheet is likely to regrow following a melting of the Greenland ice sheet, the subsequent rebound of its bedrock, and a return to present day atmospheric CO2 concentrations. This regrowth is due to the high altitude bedrock in eastern Greenland which allows the growth of glaciers which develop into an ice sheet.


Storm Track Thermohaline Circulation Freshwater Flux Warm Bias Meridional Temperature Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Olivier Marti and Pascale Braconnot for help with the GCM modelling, in particular the nudged ocean and the atmospheric boundary conditions. Thanks to Masa Kageyama for providing the storm-track code. Thanks to the two reviewers and to Gilles Ramstein for helpful comments. Thanks to the CEA for providing the computer facilities. This work was carried out in the framework of the EU project, BIOCLIM—Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal, Contract FIKW-CT-2000-00024 s, which also paid the salary of the lead author.


  1. Blanke B, Delecluse P (1993) Variability of the tropical atlantic ocean simulated by a general circulation model with two mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  2. Charbit S, Ritz C, Ramstein G (2002) Simulations of northern hemisphere ice-sheet retreat: sensitivity to physical mechanisms involved during the last deglaciation. Quaternary Sci Rev 21:243–265CrossRefGoogle Scholar
  3. Crowley TJ, Baum SK (1995) Is the Greenland ice sheet bistable. Paleoceanography 10:357–363CrossRefGoogle Scholar
  4. de Noblet N, Claussen M, Prentice CI (2000) Mid-Holocene greening of the Sahara: first results of the GAIM 6,000 year BP experiment with two asynchronously coupled atmosphere/biome models. Clim Dyn 16:643–659CrossRefGoogle Scholar
  5. de Rosnay P, Polcher J (1998) Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol Earth Syst Sci 2:239–255Google Scholar
  6. Ducoudré NI, Laval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. J Clim 6:248–273CrossRefGoogle Scholar
  7. Emanuel K (1991) A scheme for representing cumlus convection in larg scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  8. Felzer B, Oblesby RJ, Webb T, Hyman DE (1996) Sensitivity of a general circulation model to changes in northern hemisphere ice sheets. J Geophys Res 101:19077–19092CrossRefGoogle Scholar
  9. Fichefet T, Morales Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268CrossRefGoogle Scholar
  10. Fouquart Y, Bonnel B (1980) Computation of solar heating of the Earth’s atmosphere: a new parameterisdation. Beitr Phys Atmos 53:35–62Google Scholar
  11. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled model. Nature 409:153–158CrossRefPubMedGoogle Scholar
  12. Ganopolski A, Rahmstorf S, Petoukhov V, Claussen M (1998) Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391:311–356CrossRefGoogle Scholar
  13. Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970CrossRefGoogle Scholar
  14. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  15. Gibson JK, Kallberg P, Uppala S, Herandez A, Nomura A, Serrano E (1997) ERA description, ECMWF Re-analysis project series 1, Reading, UKGoogle Scholar
  16. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  17. Hoskins BJ, Valdes PJ (1990) On the existence of storm tracks. J Atmos Sci 47:1854–1864CrossRefGoogle Scholar
  18. IPCC (1995) Climate change 1995: the science of climate change. In: Houghton JT, Meira Filho LG, Callander BA, Harris H, Kattenberg A, Maskell K (eds) Contribution of working group i to the second assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK, pp 572Google Scholar
  19. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, NY, USA, pp 881Google Scholar
  20. Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and arctic ecosystems II: modeling, paleodata-model comparisons, and future projections. J Geophys Res 108:8171. Doi 10.1029/2002JD002559CrossRefGoogle Scholar
  21. Kageyama M, Valdes PJ, Ramstein G, Hewitt C, Wyputta U (1999) Northern hemisphere storm tracks in present day and last glacial maximum climate simulations: a comparison of the european PMIP models. J Clim 12:742–760CrossRefGoogle Scholar
  22. Kallberg P (1997) Aspects of the re-analyzed climate. In: ECMWF Re-analysis Project Series 2, Reading, UKGoogle Scholar
  23. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bullet Amer Meteorol Soc 77:437–471CrossRefGoogle Scholar
  24. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Friedlingstein P, Ciais P, Sitch S, Polcher J, Prentice IC A dynamical global vegetation model for studies of the coupled atmosphere-biosphere system (Submitted to Global Biogeochemical Cycles)Google Scholar
  25. Kristjánsson JE, McInnes H (1999) The impact of greenland on cyclone evolution in the North Atlantic. QJR Meteorol Soc 125:2819–2834CrossRefGoogle Scholar
  26. Levitus S (1982) Climatological atlas of the world ocean. In: NOAA/ERL GFDL professional paper 13. Princeton University Press, NTIS PB83–184093, pp 173Google Scholar
  27. Li X (1999) Ensemble atmospheric GCM simulations of climate interannual variability from 1979 to 1994. J Clim 12:986–1000CrossRefGoogle Scholar
  28. Lott F, Miller MJ (1997) A new subgrid-scale orographic drag parameterisation: its formulation and testing. QJR Meteorol Soc 123:101–127CrossRefGoogle Scholar
  29. Loutre MF (1995) Greenland ice sheet over the next 5,000 years. Geophys Res Lett 22:783–786CrossRefGoogle Scholar
  30. Loutre MF, Kageyama M (2003) Continuous climate evolution scenarios over western Europe (1000 km scale). Deliverable D7, BIOCLIM project, EC-CONTRACT : FIKW-CT-2000–00024. Available from ANDRA—Agence Nationale pour la Gestion des Dechets Radioactifs Direction Scientifique—Service Milieu Geologique (DS/MG) Parc de la Croix Blanche—1–7, rue Jean Monnet 92298 Chatenay-Malabry Cedex, France (
  31. Lunt DJ, de Noblet-Ducoudré N (2003) Global climate characteristics, including vegetation and seasonal cycles over Europe, for snapshots over the next 200,000 years. Deliverable D4/5, BIOCLIM project, EC-CONTRACT: FIKW-CT-2000–00024. Available from ANDRA—Agence Nationale pour la Gestion des Dechets Radioactifs Direction Scientifique—Service Milieu Geologique (DS/MG) Parc de la Croix Blanche—1–7, rue Jean Monnet 92298 Chatenay-Malabry Cedex, France (
  32. Madec G, Delecluse P, Imbard M, Levy C (1999) In: OPA8.1 ocean general circulation model reference manual. Notes du pole de modelisation, Institut Pierre Simon Laplace des sciences de l’environnement global. LODYC, ParisGoogle Scholar
  33. Marsh R, Gulamali M, Krznaric M, Newhouse S, Edwards NR, Lenton TM, Shepherd JG, Valdes PJ (2003) Multiple equilibria of the thermohaline circulation under anomalies in zonal and meridional moisture transport: early results with a new earth system model’, poster presented at at EGS-AGU-EUG, NiceGoogle Scholar
  34. Morcrette JJ (1991) Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J Geophys Res 96:9121–9132Google Scholar
  35. New M, Hulme M, Jones PD (1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856Google Scholar
  36. Ohmura A, Reeh N (1991) New precipitation and accumulation maps for Greenland. J Glaciol 37:140–148Google Scholar
  37. Petersen GN, Kristjánsson JE, Ólafsson H (2004) Numerical simulations of Greenland’s impact on the northern Hemisphere winter circulation. Tellus A 56:102–111CrossRefGoogle Scholar
  38. Raymoa ME, Granta B, Horowitza M, Rau GH (1996) Mid-Pliocene warmth: stronger greenhouse and stronger conveyor. Mar Micropaleontol 27:313–326CrossRefGoogle Scholar
  39. Rind D (1987) Components of the ice age circulation. J Geophys Res 92:4241–4281Google Scholar
  40. Ritz C, Fabre A, Letreguilly A (1997) Sensitivity of a Greenland ice sheet model to ice flow and ablation parameters: consequences for the evolution through the last glacial cycle. Clim Dyn 13:11–24CrossRefGoogle Scholar
  41. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterisation in large scale models. Monthly Weather Rev 117:1779–1800CrossRefGoogle Scholar
  42. Toniazzo T, Gregory JM, Huybrechts P (2004) Climatic impact of a Greenland deglaciation and its possible irreversibility. J Clim 17:21–33CrossRefGoogle Scholar
  43. Viovy N, de Noblet N (1997) Coupling water and carbon cycle in the biosphere. Sci Géol Bull 50(1–4):109–121Google Scholar
  44. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on guage observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Daniel J. Lunt
    • 1
    • 2
  • Nathalie de Noblet-Ducoudré
    • 1
  • Sylvie Charbit
    • 1
  1. 1.Laboratoire des Science du Climat et de l’Environnement (LSCE)Unite mixte de Recherche CEA-CNRSGif-sur-YvetteFrance
  2. 2.Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical SciencesUniversity of BristolBristolUK

Personalised recommendations