Climate Dynamics

, Volume 23, Issue 2, pp 215–227 | Cite as

Holocene climate variability as derived from alkenone sea surface temperature and coupled ocean-atmosphere model experiments

  • N. Rimbu
  • G. Lohmann
  • S. J. Lorenz
  • J. H. Kim
  • R. R. Schneider


Holocene climate modes are identified by the statistical analysis of reconstructed sea surface temperatures (SSTs) from the tropical and North Atlantic regions. The leading mode of Holocene SST variability in the tropical region indicates a rapid warming from the early to mid Holocene followed by a relatively weak warming during the late Holocene. The dominant mode of the North Atlantic region SST captures the transition from relatively warm (cold) conditions in the eastern North Atlantic and the western Mediterranean Sea (the northern Red Sea) to relatively cold (warm) conditions in these regions from the early to late Holocene. This pattern of Holocene SST variability resembles the signature of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second mode of both tropical and North Atlantic regions captures a warming towards the mid Holocene and a subsequent cooling. The dominant modes of Holocene SST variability emphasize enhanced variability around 2300 and 1000 years. The leading mode of the coupled tropical-North Atlantic Holocene SST variability shows that an increase of tropical SST is accompanied by a decrease of SST in the eastern North Atlantic. An analogy with the instrumental period as well as the analysis of a long-term integration of a coupled ocean-atmosphere general circulation model suggest that the AO/NAO is one dominant mode of climate variability at millennial time scales.



We would like to thank I. Cacho, J. Grimalt and K.-C. Emeis for providing their alkenone data as GHOST contributors (http://www.Pangaea/Projects/GHOST ). This study was funded by grants from the German Ministry of Research and Education (BMBF) through the program DEKLIM. We thank the reviewers for their constructive comments. RCOM-No. 150.


  1. Arz AW, Lamy F, Pätzold J, Müller PJ, Prius M (2003) Mediterranean moisture source for early to mid-Holocene humid period in the northern Red Sea. Science 300: 118–124 CrossRefPubMedGoogle Scholar
  2. Bard E, Rostek F, Sonzogni C (1997) Inter-hemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385: 707–710Google Scholar
  3. Bard E, Rostek F, Turon JL, Gendreau S (2000) Hydrological impact of Heinrich Events in the subtropical northeast Atlantic. Science 289: 1321–1324PubMedGoogle Scholar
  4. Bard E (2001) Comparison of alkenone estimates with other paleotemperature proxies. Geochem Geophys Geosyst 2 DOI 2000GC000050Google Scholar
  5. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millinnial-scale cycle in North Atlantic Holocene and glacial climates. Science 278: 1257–65Google Scholar
  6. Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320: 129–133Google Scholar
  7. Cacho I, Grimalt JO, Pelejero C, Canals M, Sierro FJ, Flores JA, Shackleton NJ (1999) Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography 14: 698–705CrossRefGoogle Scholar
  8. Cacho I, Grimalt JO, Canals M, Sbaffi L, Shackleton NJ, Shonfeld J, Zahn R (2001) Variability of the Western Mediterranean sea surface temperatures during the last 25 000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16: 40–52CrossRefGoogle Scholar
  9. Calvo E, Grimalt J, Jansen E (2002) High resolution UK 37 sea surface temperature reconstruction in the Norwegian Sea during the Holocene. Quat Sci Rev 21: 1385–1394CrossRefGoogle Scholar
  10. Capotondi L, Borsetti AM, Morigi C (1999) Foraminiferal ecozones: a high resolution proxy for the late Quaternary biochronology in the central Mediterranean Sea. Mar Geol 153: 253–274CrossRefGoogle Scholar
  11. Clark PU, Pisias NG, Stocker TF, Weaver AJ (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415: 863–869CrossRefPubMedGoogle Scholar
  12. Clement AC, Seager R, Cane MA (1999) Orbital controls on ENSO and the tropical climate. Paleoceanography 14: 441–456CrossRefGoogle Scholar
  13. Conte MH, Thompson A, Eglinton G, Green JC (1995) Lipid biomarker diversity in the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) and the related species Gephyrocapsa oceanica. J Phycol 31: 272–282Google Scholar
  14. Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press New York NY, USAGoogle Scholar
  15. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16: 661–676CrossRefGoogle Scholar
  16. Denton GH, Karlen W (1973) Holocene climatic variations - Their pattern and possible cause. Quat Res 3: 155–205Google Scholar
  17. deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yaarusinsky M (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19: 347–361CrossRefGoogle Scholar
  18. Duplessy JC, Bard E, Arnold M, Shackleton NJ, Duprat J, Labeyrie L (1991) How fast did the ocean-atmosphere system run during the last deglaciation? Earth Planet Sci Lett 103: 27–40CrossRefGoogle Scholar
  19. Emeis KC, Struck U, Schulz HM, Rosenberg R, Bernasconi S, Erlenkeuser H, Sakamoto T, Martinez-Ruiz F (2000) Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeogr Palaeoclimatol Palaeoecol 158: 259–280CrossRefGoogle Scholar
  20. Emeis KC, Schulz H, Struck U, Rossignol-Strick M, Erlenkeuser H, Howell MW, Kroon D, Mackensen A, Ishizuka S, Oba T, Sakamoto T, Koizumi I (2003) Eastern Mediterranean surface water temperatures and δ18O composition during deposition of sapropels in the late Quaternary. Paleoceanography 18 DOI 10.1029/2000PA000617Google Scholar
  21. Fisher H (2001) Imprint of large-scale atmospheric transport patterns on sea-salt records in northern Greenland ice cores. J Geophys Res 106: 23977–23984CrossRefGoogle Scholar
  22. Garric G, Hubber M (2003) Quasi-decadal variability in paleoclimate records: sunspont cycle or intrinsic oscillations? Paleoceanography 18:DOI 10.1029/2002PA000869CrossRefGoogle Scholar
  23. Ghil M, Allen RM, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson A, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:3.1-3.41 DOI 1029/2000GR000092CrossRefGoogle Scholar
  24. Giunta S, Emeis KC, Negri A (2001) Sea-surface temperature reconstruction of the last 16,000 years in the eastern Mediterranean Sea. Riv Ital Paleont Stratigr 107: 463–476Google Scholar
  25. Goodman J, Marshall J (1999) A model of decadal middle-latitude atmosphere-ocean coupled mode. J Clim 12: 621–641CrossRefGoogle Scholar
  26. Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 10–3 to 10–5 year time resolution. J Geophys Res 102: 455–26470CrossRefGoogle Scholar
  27. Hagelberg T, Bond G, deMenocal P (1994) Milankovitch band forcing of sub-Milankovitch climate variability during the Pleistocene. Paleoceanography 9: 545–558CrossRefGoogle Scholar
  28. Hurrell JW, Kushnir Y, Visbeck M, Ottersen G (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical Monograph Series 134: 1–35Google Scholar
  29. Huntley B, Prentice C (1988) July temperatures in Europe from pollen data 6000 years before present.Science 241: 687–690Google Scholar
  30. James PM, James IN (1989) Ultra-low-frequency variability in a simple atmospheric circulation model. Nature 342: 53–55 CrossRefGoogle Scholar
  31. Jones PD (1987) The early twentieth century Arctic High - fact or fiction? Clim Dyn 1: 63–75 Google Scholar
  32. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856-1991. J Geophys Res 103: 18,567–18,589CrossRefGoogle Scholar
  33. Keigwin LD, Pickart RS (1999) Slope water current over the Laurentian Fan on interannual to millennial time scales. Science 286: 520–523CrossRefPubMedGoogle Scholar
  34. Kienast M, Steinke S, Stattegger K, Calvert SE (2001) Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. Science 291: 2132–2134CrossRefPubMedGoogle Scholar
  35. Kim J-H, Schneider RR, Mulitza S, Müller PJ (2003) Reconstruction of SE trade wind intensity based on sea-surface temperature gradients in the SE Atlantic over the last 25 kyr. Geophys Res Lett 30:2144 DOI 10.1029/2003GL017557Google Scholar
  36. Kim J-H, Rimbu N, Lorenz SJ, Lohmann G, Nam S-I, Schouten S, Rühlemann C, Schneider RR (2004) North Pacific and North Atlantic sea-surface temperature variability during the Holocene. Quat Sci Rev (accepted)Google Scholar
  37. Kitoh A, Murakami S (2002) Tropical Pacific climate at the mid-Holocene and the Last Glacial Maximum simulated by a coupled ocean-atmosphere general circulation model. Paleooceanography 17:DOI 10.1029/2001PA000724Google Scholar
  38. Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Science 266: 634–637Google Scholar
  39. Legutke S, Voss R (1999) The Hamburg atmosphere-ocean coupled circulation model ECHO-G. Deutsches Klimarechenzentrum Hamburg Techn Rep 18, Hamburg, GermanyGoogle Scholar
  40. Lohmann G, Lorenz S, Prange M (2004) Northern high-latitude climate changes during the Holocene as simulated by circulation models. AGU Monographs, Bjerknes book about the Nordic Seas (accepted)Google Scholar
  41. Lorenz SJ, Lohmann G (2004) Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model. Cim Dyn (accepted)Google Scholar
  42. Marchal O, Cacho I, Stocker TF, Grimalt JO, Calvo E, Martrat B, Shackleton N, Vautravers M, Cortijo E, van Kreveld S, Andersson C, Koc N, Chapman M, Sbaffi L, Duplessy JC, Sarnthein M, Turon JL, Duprat J, Jansen E (2002) Apparent long-term cooling of the sea surface in the Northeast Atlantic and Mediterranean during the Holocene. Quat Sci Rev 21: 455–483CrossRefGoogle Scholar
  43. Mayewski PA, Meeker LD, Twickler MS, Whitlow S, Yang Q, Lyons WB, Prentice M (1997) Major features and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 110 000 year-long glaciochemical series. J Geophys Res 102: 26 345–65CrossRefGoogle Scholar
  44. Müller PJ, Kirst G, Ruhland G, von Storch H, Rosell-MeléA (1998) Calibration of the alkenone palaeotemperature index U37 K based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim Cosmochim Acta 62: 1757–1772CrossRefGoogle Scholar
  45. Noren JA, Bierman PR, Steig JE, Lini A, Southon J (2002) Millenial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 419: 821–824CrossRefPubMedGoogle Scholar
  46. O′Brien SR, Mayewski PA, Meeker LD, Meese DA, Twinckler MS, Whitlow SI (1995) Complexity of Holocene climate as reconstructed from Greenland ice core. Science 270: 1962–1964Google Scholar
  47. Pelejero C, Grimalt JO (1997) The correlation between the UK 37 index and sea surface temperatures in the warm boundary: the South China Sea. Geochim Cosmochim Acta 61: 4789–4797CrossRefGoogle Scholar
  48. Pelejero C, Grimalt JO, Heilig S, Kienast M, Wang L (1999a) High-resolution U37 K temperature reconstructions in the South China Sea over the past 220 kyr. Paleoceanography 14: 224–231CrossRefGoogle Scholar
  49. Pelejero C, Kienast M, Wang L, Grimalt JO (1999b) The flooding of Sundaland during the last deglaciation: imprints in hemipelagic sediments from the southern South China Sea. Earth Planet Sci Lett 171: 661–671CrossRefGoogle Scholar
  50. Pestiaux P, van der Mersch I, Berger A, Duplessy JC (1988) Paleoclimatic variabiity at frequencies ranging from 1/10000 to 1/1000 years; evidence for nonlinear behaviour in the climate system. Clim Change 12: 9–37Google Scholar
  51. Porter SC, Orombelli G (1985) Glacier contraction during the middle Holocene in the western Italian Alps: evidence and implications. Geology 13: 296–298Google Scholar
  52. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330: 367–369CrossRefGoogle Scholar
  53. Prahl FG, Muehlhausen LA, Zahnle DL (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52: 2303–2310Google Scholar
  54. Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Diez Y (2001) The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J Clim 14: 3408–3420 CrossRefGoogle Scholar
  55. Rimbu N, Lohmann G, Felis T, Pätzold J ( 2001) Arctic Oscillation signature in a Red Sea coral. Geophys Res Lett 28: 2959–2962CrossRefGoogle Scholar
  56. Rimbu N, Lohmann G, Kim J-H, Arz HW, Schneider RR (2003) Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data. Geophys Res Lett 30: DOI 10.1029/2002GL016570 CrossRefGoogle Scholar
  57. Rodbell DT, Seltzer GO, Anderson DM, Abbott MB, Enfield DB, Newman JH (1999) A 15,000 -year record of El Niño alluviation in southwestern Ecuador. Science 283: 516–520CrossRefPubMedGoogle Scholar
  58. Rohling EJ, Mayewski PA, Hayes A, Abu-Zied RH, Casford JSL (2002) Holocene atmosphere-ocean interactions: records from Greenland and the Aegean Sea. Clim Dyn 18: 573–592Google Scholar
  59. Rosell-Melé A, Eglinton G, Pflaumann U, Sarnthein M (1995) Atlantic core-top calibration of the UK′ 37 index as a sea-surface palaeotemperature indicator. Geochim Cosmochim Acta 59: 3099–3107CrossRefGoogle Scholar
  60. Rühlemann C, Mulitza S, Müller PJ, Wefer G, Zahn R (1999) Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402: 511–514CrossRefGoogle Scholar
  61. Sarnthein M, van Kreveld S, Erlenkeuser H, Grootes PM, Kucera M, Pflaumann U, Schulz M (2003) Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas 32: 447–461CrossRefGoogle Scholar
  62. Schulz M, Paul A (2002) Holocene climate variability on centennial-to-millennial time scales: 1. Climate records from the North-Atlantic realm. In: Wefer G, Berger WH, Behre KE, Jansen E (eds.) Climate development and history of the North Atlantic Realm. Springer Heidelberg New York Berlin pp 41–54 Google Scholar
  63. Shindell DT, Schmidt GA, Miller RL, Mann ME (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Clim 16: 4094–4107CrossRefGoogle Scholar
  64. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294: 2149–2152 PubMedGoogle Scholar
  65. Siani G, Paterne M, Michel E, Sulpizio R, Sbrana A, Arnold M, Haddad G (2001) Mediterranean sea-surface radiocarbon reservoir age changes since the last glacial maximum. Science 294: 1917–1920 CrossRefPubMedGoogle Scholar
  66. Sirocko F, Sarnthein M, Erlenkeuser H, Lange H, Arnold M, Duplessy JC (1993) Century-scale events in monsoonal climate over the past 24,000 years. Nature 364: 322–324CrossRefGoogle Scholar
  67. Sonzogni C, Bard E, Rostek F (1998) Tropical sea surface temperatures during the last glacial period: a view based on alkenones in Indian Ocean sediments. Quat Sci Rev 17: 1185–1201CrossRefGoogle Scholar
  68. Thompson DWJ, Wallace JW (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25: 1297–1300CrossRefGoogle Scholar
  69. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle. Sci 291: 1511–1517CrossRefPubMedGoogle Scholar
  70. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge UK pp 735Google Scholar
  71. Volkman JK, Eglinton G, Corner EDS, Sargent JR (1980) Novel unsaturated straight-chain methyl and ethyl ketones in marine sedimens and a coccolithophore Emiliania huxleyi. In: Douglas AG, Maxwell JR (eds) Advances in Organic geochemistry. Pergamon, Tarrytown NY, USA pp 219–227Google Scholar
  72. Wang L, Sarnthein M, Erlenkeuser H, Heilig S, Ivanova E, Kienast M, Pflaumann U, Pelejero C, Grootes P (1999) East Asian monsoon during the late Quaternary: high-resolution sediment records from the South China Sea. Mar Geol 156: 245–284CrossRefGoogle Scholar
  73. Zebiak SE, Cane MA (1987) A model for El Niõ- Southern Oscillation. Mon Wea Rev 115: 2262–2278CrossRefGoogle Scholar
  74. Zhao M, Beveridge NAS, Shackleton NJ, Sarnthein M, Eglinton G (1995) Molecular stratigraphy of cores off northwest Africa: Sea surface temperature history over the last 80 ka. Paleoceanography 10: 661–675CrossRefGoogle Scholar
  75. Zhang HC, Ma YZ, Wunneman B, Pachur HZ (2000) A Holocene climatic record from arid northwestern China. Paleogeogr Paleoclimatol Paleoecol 162: 389–401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • N. Rimbu
    • 1
  • G. Lohmann
    • 1
    • 4
    • 5
  • S. J. Lorenz
    • 2
  • J. H. Kim
    • 1
  • R. R. Schneider
    • 3
  1. 1.Bremen UniversityDepartment of GeosciencesBremenGermany
  2. 2.Max-Planck-Institute for MeteorologyModel and Data GroupHamburgGermany
  3. 3.DGO UMR 5805 EPOCCNRS/Université de Bordeaux ITalenceFrance
  4. 4.DFG-Research Center of Ocean MarginsBremen UniversityBremenGermany
  5. 5.Alfred-Wegner-Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations