Climate Dynamics

, Volume 23, Issue 3–4, pp 371–389 | Cite as

Twentieth century north atlantic climate change. Part I: assessing determinism

  • J. W. Hurrell
  • M. P. Hoerling
  • A. S. Phillips
  • T. Xu
Article

Abstract

Boreal winter North Atlantic climate change since 1950 is well described by a trend in the leading spatial structure of variability, known as the North Atlantic Oscillation (NAO). Through diagnoses of ensembles of atmospheric general circulation model (AGCM) experiments, we demonstrate that this climate change is a response to the temporal history of sea surface temperatures (SSTs). Specifically, 58 of 67 multi-model ensemble members (87%), forced with observed global SSTs since 1950, simulate a positive trend in a winter index of the NAO, and the spatial pattern of the multi-model ensemble mean trend agrees with that observed. An ensemble of AGCM simulations with only tropical SST forcing further suggests that variations in these SSTs are of primary importance. The probability distribution function (PDF) of 50-year NAO index trends from the forced simulations are, moreover, appreciably different from the PDF of a control simulation with no interannual SST variability, although chaotic atmospheric variations are shown to yield substantial 50-year trends. Our results thus advance the view that the observed linear trend in the winter NAO index is a combination of a strong tropically forced signal and an appreciable “noise” component of the same phase. The changes in tropical rainfall of greatest relevance include increased rainfall over the equatorial Indian Ocean, a change that has likely occurred in nature and is physically consistent with the observed, significant warming trend of the underlying sea surface.

References

  1. Alexander MA (1992) Midlatitude atmosphere-ocean interaction during El Niño. Part II: the Northern Hemisphere atmosphere. J Clim 5: 959–972CrossRefGoogle Scholar
  2. Ambaum MH, Hoskins BJ (2002) The NAO troposphere-stratosphere connection. J Clim 15: 1969–1978CrossRefGoogle Scholar
  3. Andrews DG, Holton J, Leovy CB (1987) Middle atmosphere dynamics, Academic Press, San Diego, CA, USA pp 489Google Scholar
  4. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294: 581–584CrossRefPubMedGoogle Scholar
  5. Baldwin MP, Cheng X, Dunkerton TJ (1994) Observed correlations between winter-mean tropospheric and stratospheric circulation anomalies. Geophys Res Lett 21: 1141–1144CrossRefGoogle Scholar
  6. Barsugli JJ, Battisti DS (1998) The basic effects of atmosphere-ocean thermal coupling on midlatitude variability. J Atmos Sci 55: 477–493CrossRefGoogle Scholar
  7. Black RX (2002) Stratospheric forcing of surface climate in the Arctic Oscillation. J Clim 15: 268–277CrossRefGoogle Scholar
  8. Black RX, McDaniel BA (2003) Stratosphere-troposphere interactions: case studies of the NAM. Bull Amer Meteorol Soc 84: 900Google Scholar
  9. Bottomley M, Folland CK, Hsiung J, Newell RE, Parker DE (1990) Global ocean surface temperature atlas. UK Meteorological Office, Reading, UK, pp 20, and 313 platesGoogle Scholar
  10. Boville BA, Gent PR (1998) The NCAR Climate System Model, Version One. J Clim 11: 1115–1130CrossRefGoogle Scholar
  11. Bretherton CS, Battisti DS (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27: 767–770CrossRefGoogle Scholar
  12. Cassou C, Terray L (2001) Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe winter climate. Geophys Res Lett 28: 3195–3198CrossRefGoogle Scholar
  13. Cayan DR (1992a) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22: 859–881CrossRefGoogle Scholar
  14. Cayan DR (1992b) Latent and sensible heat flux anomalies over the northern oceans: the connection to monthly atmospheric circulation. J Clim 5: 354–369CrossRefGoogle Scholar
  15. Chen P, Robinson WA (1992) Propagation of planetary waves between the troposphere and stratosphere. J Atmos Sci 49: 2533–2545CrossRefGoogle Scholar
  16. Cook ER (2003) Multi-proxy reconstructions of the North Atlantic Oscillation (NAO) index: a critical review and a new well-verified winter NAO index reconstruction back to AD 1400. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophys Monogr 134: 63–79Google Scholar
  17. Czaja A, Robertson AW, Huck T (2003) The role of Atlantic ocean-atmosphere coupling in affecting North Atlantic Oscillation Variability. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophys Monogr 134: 147–172Google Scholar
  18. Deser C, Timlin MS (1997) Atmosphereocean interaction on weekly time scales in the North Atlantic and Pacific. J Clim: 393-408Google Scholar
  19. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and North Pacific in boreal winter since 1900. J Clim (in press)Google Scholar
  20. Ferrara JD, Mechoso CR, Robertson AW (2000) Ensembles of AGCM two-tier predictions and simulations of the circulation anomalies during winter 1997–98. Mon Weather Rev 128: 3589–3604CrossRefGoogle Scholar
  21. Feldstein SB (2000) Teleconnections and ENSO: the time scale, power spectra, and climate noise properties. J Clim 13: 4430–4440CrossRefGoogle Scholar
  22. Feldstein SB (2002) The recent trend and variance increase of the Annular Mode. J Clim 15: 88–94CrossRefGoogle Scholar
  23. Gates WL and Coauthors (1999) An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull Am Meteorol Soc 80: 335–345CrossRefGoogle Scholar
  24. Gillett NP, Baldwin MP, Allen MR (2001) Evidence for nonlinearity in observed stratospheric circulation changes. J Geophys Res 106: 7891–7901CrossRefGoogle Scholar
  25. Gillett NP, Graf HF, Osborn TJ (2003) Climate change and the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophys Monogr 134: 193–209Google Scholar
  26. Greatbatch R J (2000) The North Atlantic Oscillation. Stochastic and environmental Risk Assessment 14: 213–242CrossRefGoogle Scholar
  27. Hartmann DL, Wallace JM, Limpasuvan V, Thompson DWJ, and Holton JR (2000) Can ozone depletion and greenhouse warming interact to produce rapid climate change? Proc Nat Acad Sci 97: 1412–1417CrossRefPubMedGoogle Scholar
  28. Haynes PH, Marks CJ, McIntyre ME, Shepherd TG, Shine KP (1991) On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J Atmos Sci 48: 651–678CrossRefGoogle Scholar
  29. Hoerling MP, Hurrell JW, Xu T (2001a) Tropical origins for recent North Atlantic climate change. Science 292: 90–92CrossRefPubMedGoogle Scholar
  30. Hoerling MP, Kumar A, Whitaker JS, Wang W (2001b) The midlatitude warming during 1998–2000. Geophys Res Lett 28: 755–758CrossRefGoogle Scholar
  31. Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn (in press)Google Scholar
  32. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269: 676–679Google Scholar
  33. Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36: 301–326CrossRefGoogle Scholar
  34. Hurrell JW, Trenberth KE (1999) Global sea surface temperature analyses: multiple problems and their implications for climate analysis, modeling, and reanalysis. Bull Am Meteorol Soc 80: 2661–2678CrossRefGoogle Scholar
  35. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophysi Monograph 134: 1–35Google Scholar
  36. Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292: 662–667CrossRefPubMedGoogle Scholar
  37. Kalnay E, and Coauthors (1996) The NCEP/NCAR 40-year reanalysis project, Bull Am Meteorol Soc 77: 437–471Google Scholar
  38. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The National Center for Atmospheric Research Community Climate Model: CCM3. J Clim 11: 1131–1149CrossRefGoogle Scholar
  39. Kindem IT, Christiansen B (2001) Tropospheric response to stratospheric ozone loss. Geophys Res Lett 28: 1547–1550CrossRefGoogle Scholar
  40. Kitoh A, Doide H, Kodera K, Yukimoto S, Noda A (1996) Interannual variability in the stratospheric- tropospheric circulation in a coupled ocean-atmosphere GCM. Geophys Res Lett 23: 543–546CrossRefGoogle Scholar
  41. Knutson TR, Delworth TL, Dixon KW, Stouffer RJ (1999) Model assessment of regional surface temperature trends (1949–1997). J. Geophys Res 104: 30981–30996, DOI 1999JD900965CrossRefGoogle Scholar
  42. Kodera K, Chiba M, Koide H, Kitoh A, Nikaidou Y (1996) Interannual variability of the winter stratosphere and troposphere in the Northern Hemisphere. J Meteorol Soc Jpn 74: 365–382Google Scholar
  43. Kumar A, Hoerling MP (1995) Prospects and limitations of seasonal atmospheric GCM predictions. Bull Am Meteorol Soc 76: 335–345CrossRefGoogle Scholar
  44. Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton RT (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15: 2233–2256CrossRefGoogle Scholar
  45. Leith CE (1973) The standard error of time-averaged estimates of climatic means. J Appl Meteorol 12:1066–1069CrossRefGoogle Scholar
  46. Lin H, Derome J, Greatbatch RJ, Peterson KA, Lu J (2002) Tropical links of the Arctic Oscillation. Geophys Res Lett 29, DOI 10.1029/2002GL015822Google Scholar
  47. Lu J, Greatbatch RJ, Peterson KA (2004) On the trend in Northern Hemisphere winter atmospheric circulation during the last half of the twentieth Century. J Clim (in press)Google Scholar
  48. Madden RA (1976) Estimates of the natural variability of time-averaged sea-level pressure. Mon Weather Rev 104: 942–952CrossRefGoogle Scholar
  49. Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21: 1863–1898CrossRefGoogle Scholar
  50. Mehta V, Suarez M, Manganello JV, Delworth TD (2000) Oceanic influence on the North Atlantic Oscillation and associated Northern Hemisphere climate variations: 1959–1993. Geophys Res Lett 27: 121–124CrossRefGoogle Scholar
  51. Miller AJ, Zhou S, Yang S.-K (2003): Relationship of the Arctic and Antarctic Oscillations to the outgoing longwave radiation. J Clim 16: 1583–1592Google Scholar
  52. Osborn TJ (2004) The winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn (in press)Google Scholar
  53. Osborn TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic oscillation as simulated by a climate model. Clim Dyn 15: 685–702CrossRefGoogle Scholar
  54. Parker DE, Jones PD, Folland CK, Bevan A (1994) Interdecadal changes of surface temperature since the late nineteenth century. J Geophys Res 99: 14373–14399CrossRefGoogle Scholar
  55. Pegion P, Suarez M, Schubert S (2001) An analysis of the causes of differences in circulation patterns during the El Niño winters of 1983 and 1998. Proc 26th Annual Climate Diagnostics and Prediction Workshop, La Jolla, CA. National Oceanic and Atmospheric AdministrationGoogle Scholar
  56. Peng S, Robinson WA, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim 15: 1987–2004CrossRefGoogle Scholar
  57. Perlwitz J, Graf H-F (1995) The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. J Clim 8: 2281–2295CrossRefGoogle Scholar
  58. Perlwitz J, Graf H-F (2001) Troposphere-stratosphere dynamic coupling under strong and weak polar vortex conditions. Geophys Res Lett 28: 271–274CrossRefGoogle Scholar
  59. Peterson KA, Greatbatch RJ, Lu J, Lin H, Derome J (2002) Hindcasting the NAO using diabatic forcing of a simple AGCM. Geophys Res Lett 29: DOI 10.1029/2001GL014502CrossRefGoogle Scholar
  60. Polvani LM, Kushner PJ (2002) Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophy Res Lett 29: 1114 DOI 10.1029/2001GL014284CrossRefGoogle Scholar
  61. Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Díez Y (2001) The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J Clim 14: 3408–3420CrossRefGoogle Scholar
  62. Rajagolapan B, Kushnir Y, Tourre Y (1998) Observed decadal midlatitude and tropical Atlantic climate variability. Geophys Res Lett 25: 3967–3970CrossRefGoogle Scholar
  63. Randel WJ, Wu F (1999) Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J Clim 12: 1467–1479CrossRefGoogle Scholar
  64. Rayner NA, Horton EB, Parker DE, Folland CK, Hackett RB (1996) Version 2.2 of the Global Sea-Ice and Sea Surface Temperature data set, 1903–1994. CRTN 74, pp. 21 plus figuresGoogle Scholar
  65. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res DOI 10.1029/2002JD002670Google Scholar
  66. Reynolds RW (1988) A real-time global sea surface temperature analysis. J Clim 1: 75–86CrossRefGoogle Scholar
  67. Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. JClim 7: 929–948CrossRefGoogle Scholar
  68. Reynolds RW, Rayner NA, Smith, TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15: 1609–1625CrossRefGoogle Scholar
  69. Robertson AW, Mechoso CR, Kim YJ (2000) The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J Clim 13: 122–138CrossRefGoogle Scholar
  70. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398: 320–323CrossRefGoogle Scholar
  71. Roeckner E and Coauthors (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Max Planck Institut fur Meteorolologiem Report No 218, Hamburg, Germany, pp 90Google Scholar
  72. Rogers JC, van Loon H (1979) The seasaw in winter temperature between Greenland and Northern Europe, Part II: some oceanic and atmospheric effects in middle and high latitudes. Mon Weather Rev 107: 509–519CrossRefGoogle Scholar
  73. Salby ML, Callaghan PF (2002) Interannual changes of the stratospheric circulation: relationship to ozone and tropospheric structure. J Clim 24: 3673–3685Google Scholar
  74. Saravanan R, Giannini A, Chang P, and Ji L (2002) Estimating potential predictability associated with tropical Atlantic SST anomalies. In: Legler D (ed) Proceedings of the US. CLIVAR Atlantic conference. US CLIVAR Office, Washington DC USA pp 91–93Google Scholar
  75. Schmutz C, Luterbacher J, Gyalistras D, Xoplaki E, Wanner H (2000) Can we trust proxy-based NAO index reconstructions? Geophy Res Lett 27: 1135–1138CrossRefGoogle Scholar
  76. Schneider EK, Bengtsson L, Hu Z-Z (2003) Forcing of Northern Hemisphere climate trends. J Atmos Sci 60: 1504–1521CrossRefGoogle Scholar
  77. Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2002) Causes of long-term drought in the United States Great Plains. J Clim 17: 485–503CrossRefGoogle Scholar
  78. Shindell DT, Miller RL, Schmidt G, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399: 452–455CrossRefGoogle Scholar
  79. Shindell DT, Schmidt GA, Miller RL, Rind D (2001) Northern hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J Geophys Res 106: 7193–7210CrossRefGoogle Scholar
  80. Smith TM, Reynolds RW, Livezey RE, Stokes DC (1996) Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J Clim 9: 1403–1420CrossRefGoogle Scholar
  81. Stephenson DB, Pavan V (2003) The North Atlantic Oscillation in coupled climate models: a CMIP1 evaluation. Clim Dyn 20: 381–399Google Scholar
  82. Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic Oscillation a random walk? Int J Climatol 20:1–18CrossRefGoogle Scholar
  83. Sutton RT, Hodson DLR (2003) The influence of the ocean on North Atlantic climate variability 1871–1999. J Clim 16: 3296–3313CrossRefGoogle Scholar
  84. Sutton RT, Norton WA, Jewson SP (2001) The North Atlantic Oscillation - what role for the ocean? Atmos Sci Lett DOI 10.1006/asle.2000.0018Google Scholar
  85. Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation, Part II: trends. J Clim 13: 1018–1036CrossRefGoogle Scholar
  86. Thompson DWJ, Lee S, Baldwin MP (2003) Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophys Monogr 134: 81–112 Google Scholar
  87. Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: sea level pressures, surface temperatures and precipitation. J Clim 13: 4358–4365CrossRefGoogle Scholar
  88. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N.-C, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103: 14291–14324CrossRefGoogle Scholar
  89. Venzke S, Allen MR, Sutton RT, Rowell DP (1999) The atmospheric response over the North Atlantic to decadal changes in sea surface temperatures. J Clim 12: 2562–2584CrossRefGoogle Scholar
  90. Visbeck M, Chassignet EP, Curry RG, Delworth TL, Dickson RR, Krahmann K (2003) The ocean’s response to North Atlantic Oscillation variability. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophys Monogr 134: 113–146Google Scholar
  91. Vose RS, Schmoyer RL, Steurer PM, Peterson TC, Heim R, Karl TR, Eischeid JK (1992) The Global Historical Climatology Network: Longterm monthly mean temperature, precipitation, sea level pressure, and station pressure data. ORNL/CDIAC-53, NDP-041. Carbon Dioxide Analysis Center, pp 100Google Scholar
  92. Wanner H, Brönnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation - concepts and studies. Survey Geophys 22: 321–381CrossRefGoogle Scholar
  93. Weickmann KM, Lussky GL, Kutzbach JE (1985) Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon Weather Rev 113: 941–961CrossRefGoogle Scholar
  94. Woodruff SD, Slutz RJ, Jenne RL, Steurer PM (1987) A Comprehensive Ocean-Atmosphere Data Set. Bull Am Meteorol Soc 68: 1239–1250CrossRefGoogle Scholar
  95. Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic Oscillation and Southern Oscillations. Bull Am Meteorolol Soc 80: 245–255CrossRefGoogle Scholar
  96. Xie S-P, Tanimoto Y (1998) A pan-Atlantic decadal climate oscillation. Geophys Res Lett 25: 2185–2188CrossRefGoogle Scholar
  97. Zhou S, Miller AJ, Wang J, Angell JK (2001) Trends of NAO and AO and their associations with stratospheric processes. Geophys Res Lett 28: 4107–4110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag  2004

Authors and Affiliations

  • J. W. Hurrell
    • 1
  • M. P. Hoerling
    • 2
  • A. S. Phillips
    • 1
  • T. Xu
    • 2
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Climate Diagnostic CenterNOAABoulderUSA

Personalised recommendations