Climate Dynamics

, Volume 22, Issue 2–3, pp 223–238 | Cite as

Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene

Article

Abstract

Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.

Notes

Acknowledgements.

We would like to thank Martin Claussen and Viktor Brovkin for stimulating our interest in examining the role of feedbacks on Arctic climates. We thank Kerstin Sickel for assistance in running the diagnostic simulations with BIOME4, Gerhard Bönisch for his help with accessing data from the PAIN and BIOME 6000 databases, Silvana Schott for the final figure layout and Claudia Kubatzki for providing us with data from the CLIMBER model. We thank Colin Prentice and Claudia Kubatzki for reviews of an earlier version of the manuscript. This is a contribution to the Palaeoclimate Modelling Intercomparison Project (PMIP), to the TEMPO (Testing Earth-system Models with Palaeoenvironmental Observations) project, and to the BMBF-sponsored project “Past Climate Sensitivity and Variability”.

References

  1. Berger A (1978) Long-term variations of daily insolation and Quaternary climatic changes. J Atmos Sci 35: 2362–2367Google Scholar
  2. Berger A (2001) The role of CO2, sea level and vegetation during the Milankovitch-forced glacial-interglacial cycles. In: Bengtsson LO, Hammer CU (eds) Geosphere–biosphere interactions and climate. Pontifical Academy of Sciences, Cambridge University Press, Cambridge, UK, pp 119–146Google Scholar
  3. Bigelow NH, Brubaker LB, Edwards ME, Harrison SP, Prentice IC, Anderson PM, Andreev AA, Bartlein PJ, Christensen TR, Cramer W, Kaplan JO, Lozhkin AV, Matveyeva NV, Murray DF, McGuire AD, Razzhivin AY, Ritchie JC, Smith B, Walker DA, Gajewski K, Wolf V, Holmqvist B, Igarashi Y, Kremenetskii K, Paus A, Pisaric MFJ, Volkova VS (2003) Climate change and Arctic ecosystems I. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene and present. J Geophys Res-Atmosphere 108: 8170, doi 10.1029/2002JD002558Google Scholar
  4. Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359: 716–718CrossRefGoogle Scholar
  5. Braconnot P, Marti O, Joussaume S (1997) Adjustment and feedbacks in a global coupled ocean–atmosphere model. Clim Dyn 13: 507–519CrossRefGoogle Scholar
  6. Braconnot P, Joussaume S, Marti O, de Noblet N (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys Res Lett 26: 2481–2484CrossRefGoogle Scholar
  7. Braconnot P, Joussaume S, de Noblet N, Ramstein G (2000a) Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Paleoclimate Modelling Intercomparison Project. Glob Planet Change 26: 51–66CrossRefGoogle Scholar
  8. Braconnot P, Marti O, Joussaume S, Leclainche Y (2000b) Ocean feedback in response to 6 kyr BP insolation. J Clim 13: 1537–1553CrossRefGoogle Scholar
  9. Broström A, Coe M, Harrison SP, Gallimore R, Kutzbach JE, Foley J, Prentice IC, Behling P (1998) Land surface feedbacks and paleomonsoons in northern Africa. Geophys Res Lett 25: 3615–3618Google Scholar
  10. Brovkin V, Levis S, Loutre MF, Crucifix M, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V (2003) Stability analysis of the climate-vegetation system in the northern high latitudes. Clim Change 57: 119–138Google Scholar
  11. Chapman WL, Walsh JE (1993) Recent variations of sea ice and air temperature in high latitudes. Bull Am Meteorol Soc 74: 33–47CrossRefGoogle Scholar
  12. Claussen M (2001) Biogeophysical feedbacks and the dynamics of climate. In: Schulze E-D, Heimann M, Harrison SP, Holland E, Lloyd J, Prentice IC, Schimel DS, (Max-Planck-Institute for Biogeochemistry J, Germany) (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, USA, pp 61–69Google Scholar
  13. Claussen M, Gayler V (1997) The greening of the Sahara during the mid-Holocene: results of an interactive atmosphere-biome model. Glob Ecol Biogeogr Lett 6: 369–377Google Scholar
  14. Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper CB, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CI (eds) Climate Change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 525–582Google Scholar
  15. Curry JA, Schramm JL, Ebert EE (1995) Sea-ice albedo climate feedback mechanism. J Clim 8: 240–247CrossRefGoogle Scholar
  16. de Noblet NI, Prentice IC, Joussaume S, Texier D, Botta A, Haxeltine A (1996) Possible role of atmosphere–biosphere interactions in triggering the last glaciation. Geophys Res Lett 23: 3191–3194Google Scholar
  17. Douville H, Royer JF (1996) Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Meteo-France GCM. Clim Dyn 12: 449–466CrossRefGoogle Scholar
  18. Ducoudré NI, Laval K, Perrier A (1993) SECHIBA, a new set of parametrizations of the hydrologic exchanges at the land atmosphere interface within the LMD atmospheric general circulation model. J Clim 6: 248–273CrossRefGoogle Scholar
  19. Edwards ME, Anderson PM, Brubaker LB, Ager TA, Andreev AA, Bigelow NH, Cwynar LC, Eisner WR, Harrison SP, Hu F-S, Jolly D, Lozhkin AV, MacDonald GM, Mock CJ, Ritchie JC, Sher AV, Spear RW, Williams JW, Yu G (2000) Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr BP. J Biogeogr 27: 521–554Google Scholar
  20. FAO (1995) Digital soil map of the world and derived soil properties. Food and Agriculture Organization, Rome, ItalyGoogle Scholar
  21. Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371: 52–54CrossRefGoogle Scholar
  22. Gallimore RG, Kutzbach JE (1996) Role of orbitally induced changes in tundra area in the onset of glaciation. Nature 381: 503–505Google Scholar
  23. Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation-atmosphere–ocean interaction on climate during the mid-Holocene. Science 280: 1916–1919PubMedGoogle Scholar
  24. Gloersen P, Campbell WJ (1991) Recent variations in arctic and antarctic sea-ice covers. Nature 352: 33–36CrossRefGoogle Scholar
  25. Guilyardi E, Madec G, Terray L (1999) The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean–atmosphere model. Institut Pierre Simone Laplace Note13: pp 19 (Available online at http://www.ipsl.jussieu.fr/modelisation/note13.html)Google Scholar
  26. Harrison SP, Prentice IC (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modeling and palaeoclimate simulations. Glob Change Biol 9: 983–1004Google Scholar
  27. Harrison SP, Braconnot P, Joussaume S, Hewitt C, Stouffer RJ (2002) Comparison of palaeoclimate simulations enhances confidence in models. Eos, Transactions, Am Geophys Union 83: 447–447Google Scholar
  28. Harrison SP, Jolly D, Laarif F, Abe-Ouchi A, Dong B, Herterich K, Hewitt C, Joussaume S, Kutzbach JE, Mitchell J, De Noblet N, Valdes P (1998) Intercomparison of simulated global vegetation distributions in response to 6 kyr BP orbital forcing. J Clim 11: 2721–2742CrossRefGoogle Scholar
  29. Harrison SP, Kutzbach JE, Liu Z, Bartlein PJ, Otto-Bliesner BL, Muhs D, Prentice IC, Thompson RS (2003) Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Clim Dyn 20: 663–688, doi:10.1007/s00382-002-0300-6Google Scholar
  30. Harrison SP, Yu G, Tarasov PE (1996) Late Quaternary lake-level record from northern Eurasia. Quat Res 45: 138–159CrossRefGoogle Scholar
  31. Harvey LDD (1988) Climatic impact of ice age aerosols. Nature 334: 333–335CrossRefGoogle Scholar
  32. Hewitt CD, Broccoli AJ, Mitchell JFB, Stouffer RJ (2001) A coupled model study of the last glacial maximum: was part of the North Atlantic relatively warm? Geophys Res Lett 28: 1571–1574Google Scholar
  33. Hewitt CD, Mitchell JFB (1998) A fully coupled GCM simulation of the climate of the mid-Holocene. Geophys Res Lett 25: 361–364Google Scholar
  34. Joussaume S, Braconnot P (1997) Sensitivity of paleoclimate simulation results to season definitions. J Geophys Res-Atmos 102: 1943–1956Google Scholar
  35. Joussaume S, Taylor KE (1995) Status of the Paleoclimate Modelling Intercomparison Project (PMIP). In: Gates WL (ed) Proc First Int AMIP Sci Conf 15–19 May 1995. Vol WMO/TD-No. 732. WCRP (World Climate Research Programm) – 92, Monterey, California, USA, pp 425–430Google Scholar
  36. Joussaume S, Taylor KE (2000) The Paleoclimate Modelling Intercomparison Project. In: Braconnot P (ed) Paleoclimate Modelling Intercomparison Project (PMIP). Proc third PMIP workshop. Vol WCRP-111; WMO/TD-No. 1007. WCRP, La Huardière, Canada, 4–8 October 1999, pp 9–25Google Scholar
  37. Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and arctic ecosystems II. Modeling, paleodata-model comparisons, and future projections. J Geophys Res (in press)Google Scholar
  38. Kubatzki C, Claussen M (1998) Simulation of the global bio-geophysical interactions during the Last Glacial Maximum. Clim Dyn 14: 461–471CrossRefGoogle Scholar
  39. Kubatzki C, Montoya M, Rahmstorf S, Ganopolski A, Claussen H (2000) Comparison of the last interglacial climate simulated by a coupled global model of intermediate complexity and an AOGCM. Clim Dyn 16: 799–814CrossRefGoogle Scholar
  40. Kutzbach JE, Gallimore RG (1988) Sensitivity of a coupled atmosphere mixed layer ocean model to changes in orbital forcing at 9000 years BP. J Geophys Res-Atmos 93: 803–821Google Scholar
  41. Le Clainche Y (2000) Etude du Couplage Ocean-Glace-Atmosphère et de l’Impact de la Glace de Mer sur le Climate des Haute Latitudes. Thèse de doctorat Université Paris VIGoogle Scholar
  42. Levis S, Foley JA, Pollard D (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26: 747–750CrossRefGoogle Scholar
  43. Levis S, Foley JA, Pollard D (2000) Large-scale vegetation feedbacks on a doubled CO2 climate. J Clim 13: 1313–1325CrossRefGoogle Scholar
  44. Liu Z, Harrison SP, Kutzbach JE (2003) Global monsoons in the Holocene and oceanic feedback. J Clim (in press)Google Scholar
  45. Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296: 1687–1689CrossRefPubMedGoogle Scholar
  46. Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12: 381–388CrossRefGoogle Scholar
  47. Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA8.1 ocean general circulation model reference manual. Institut Pierre Simon Laplace Note 11: (Avalable online at http://www.ipsl.jussieu.fr/modelisation/note11.html)Google Scholar
  48. Martin S, Munoz E, Drucker R (1997) Recent observations of a spring-summer surface warming over the Arctic Ocean. Geophys Res Lett 24: 1259–1262Google Scholar
  49. Masson V, Joussaume S (1997) Energetics of the 6000-yr BP atmospheric circulation in boreal summer, from large-scale to monsoon areas: a study with two versions of the LMD AGCM. J Clim 10: 2888–2903CrossRefGoogle Scholar
  50. Maycut GA, Untersteiner N (1971) Some results from a time-dependent, thermodynamic model of sea-ice. J Geophys Res 76: 1550–1575Google Scholar
  51. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386: 698–702Google Scholar
  52. Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change of the last four centuries. Science 278: 1251–1256Google Scholar
  53. Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ, Comiso JC (1999) Artic sea ice extents, areas, and trends: 1978–1996. J Geophys Res-Oceans 104: 20,837–20,856Google Scholar
  54. Prentice IC, Webb III T (1998) BIOME 6000: reconstructing global mid-Holocene vegetation patterns from palaeoecological records. J Biogeogr 25: 997–1005CrossRefGoogle Scholar
  55. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19: 117–134Google Scholar
  56. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change: IPCC Report. Cambridge University Press, Cambridge, UK, pp 185–225Google Scholar
  57. Prentice IC, Guiot J, Huntley B, Jolly D, Cheddadi R (1996) Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn 12: 185–194CrossRefGoogle Scholar
  58. Prentice IC, Jolly D, BIOME 6000 Participants (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27: 507–519CrossRefGoogle Scholar
  59. Reynolds RW (1988) A real-time global sea surface temperature analysis. J Clim 1: 75–87CrossRefGoogle Scholar
  60. Sadourny R, Laval K (1984) January and July performance of the LMD general circulation model. In: Berger AL, Nicolls C (eds) New perspectives in climate modelling. Vol 16: developements in atmospheric science. Elsevier, Paris, pp 173–197Google Scholar
  61. Serreze MC, Walsh JE, Chapin III FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46: 159–207CrossRefGoogle Scholar
  62. Stein U, Alpert P (1993) Factor separation in numerical simulations. J Atmos Sci 50: 2107–2115CrossRefGoogle Scholar
  63. Tarasov PE, Webb III T, Andreev AA, Afanas’eva NB, Berezina NA, Bezusko LG, Blyakharchuk TA, Bolikhovskaya NS, Cheddadi R, Chernavskaya MM, Chernova GM, Dorofeyuk NI, Dirksen VG, Elina GA, Filimonova LV, Glebov FZ, Guiot J, Gunova VS, Harrison SP, Jolly D, Khomutova VI, Kvavadze EV, Osipova IM, Panova NK, Prentice IC, Saarse L, Sevastyanov DV, Volkova VS, Zernitskaya VP (1998) Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J Biogeogr 25: 1029–1053CrossRefGoogle Scholar
  64. TEMPO-Members, Kutzbach JE, Bartlein PJ, Foley JA, Harrison SP, Hostetler SW, Liu Z, Prentice IC, Webb III T (1996) Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: a case study at 6000 years before present. Glob Biogeochem Cycle 10: 727–736Google Scholar
  65. Texier D, de Noblet N, Harrison SP, Haxeltine A, Jolly D, Joussaume S, Laarif F, Prentice IC, Tarasov P (1997) Quantifying the role of biosphere–atmosphere feedbacks in climate change: coupled model simulation for 6000 years BP and comparison with paleodata for northern Eurasia and northern Africa. Clim Dyn 13: 865–882CrossRefGoogle Scholar
  66. Vavrus SJ (1999) The response of the coupled Arctic sea ice atmosphere system to orbital forcing and ice motion at 6 kyr and 115 kyr BP. J Clim 12: 873–896CrossRefGoogle Scholar
  67. Vavrus SJ, Harrison SP (2003) The impact of sea-ice dynamics on the Arctic climate system. Clim Dyn 20: 741–757, doi:10.1007/s00382-003-0309-5Google Scholar
  68. Williams JW, Webb III T, Richard PH, Newby P (2000) Late quaternary biomes of Canada and the eastern United States. J Biogeogr 27: 585–607Google Scholar
  69. Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327: 617–618CrossRefGoogle Scholar
  70. Yu GE, Harrison SP (1995) Holocene changes in atmospheric circulation patterns as shown by lake status changes in northern Europe. Boreas 24: 260–268Google Scholar
  71. Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabonov NV, Myneni RB (2001) Variations in norhtern vegetation activity inferred feom satellite data of vegetation index during 1981 to 1999. J Geophys Res-Atmos 106: 20,069–20,083Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Max Planck Institute for Biogeochemistry, PO Box 100164, 07701 Jena, Germany
  2. 2.IPSL/LSCE – Laboratoire des Sciences du Climat et de l’Environnement, Unité mixte CNRS-CEA, D.S.M./Orme des Merisiers/Bat. 709, CEA/Saclay, Gif-sur-Yvette, 91191, France

Personalised recommendations