Advertisement

Climate Dynamics

, Volume 21, Issue 3–4, pp 317–326 | Cite as

Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods

  • N. Marwan
  • M. H. Trauth
  • M. Vuille
  • J. Kurths
Article

Abstract

Higher variability in rainfall and river discharge could be of major importance in landslide generation in the northwestern Argentine Andes. Annual layered (varved) deposits of a landslide dammed lake in the Santa Maria Basin (26°S, 66°W) with an age of 30,000 14C years provide an archive of precipitation variability during this time. The comparison of these data with present-day rainfall observations tests the hypothesis that increased rainfall variability played a major role in landslide generation. A potential cause of such variability is the El Niño/Southern Oscillation (ENSO). The causal link between ENSO and local rainfall is quantified by using a new method of nonlinear data analysis, the quantitative analysis of cross recurrence plots (CRP). This method seeks similarities in the dynamics of two different processes, such as an ocean–atmosphere oscillation and local rainfall. Our analysis reveals significant similarities in the statistics of both modern and palaeo-precipitation data. The similarities in the data suggest that an ENSO-like influence on local rainfall was present at around 30,000 14C years ago. Increased rainfall, which was inferred from a lake balance modeling in a previous study, together with ENSO-like cyclicities could help to explain the clustering of landslides at around 30,000 14C years ago.

Keywords

Southern Oscillation Index Rock Avalanche Local Rainfall Phase Space Trajectory Nonlinear Time Series Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements.

This work is part of the Collaborative Research Center 267 Deformation Processes in the Andes and the Priority Programme Geomagnetic variations: Spatio-temporal structures, processes and impacts on the system Earth supported by the German Research Foundation. We gratefully acknowledge the help of U. Schwarz and M. Thiel for useful conversations and discussions and U. Bahr and M. Strecker for support of this work. Further we would like to thank the NOAA-CIRES Climate Diagnostics Center for providing COADS and CMAP data.

References

  1. Aceituno P, Montecinos A (1997) Patterns of convective cloudiness in South America during austral summer from OLR pentads. In: Preprints Fifth Int Conf on Southern Hemisphere Meteorology and Oceanography, Pretoria, South Africa. Am Meteorol Soc, pp 328–329Google Scholar
  2. Beaufort L, de Garidel-Thoron T, Mix AC, Pisias NG (2001) ENSO-like forcing on oceanic primary production during the late pleistocene. Science 293: 2440–2444 DOI 10.1126/science.293.5539.2440CrossRefPubMedGoogle Scholar
  3. Bianchi AR, Yañez CE (1992) Las precipitaciones en el noroeste Argentino. Instituto Nacional de Tecnologia Agropecuaria, Estacion Experimental Agropecuaria SaltaGoogle Scholar
  4. Bookhagen B, Haselton K, Trauth MH (2001) Hydrological modelling of a Pleistocene landslide-dammed lake in the Santa Maria Basin, NW Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 169: 113–127 DOI 10.1016/S0031-0182(01)00221-8CrossRefGoogle Scholar
  5. Bradley RS (1999) Paleoclimatology – reconstructing climates of the Quaternary. Vol 64 of International Geophysics Series. Academic Press, San Diego, USAGoogle Scholar
  6. Clement AC, Seager R, Cane MA (1999) Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanography 14: 441–456Google Scholar
  7. Dethier DP, Reneau SL (1996) Lacustrine chronology links late Pleistocene climate change and mass movement in northern New Mexico. Geology 24: 539–542 DOI 10.1130/0091-7613 (1996) 024<0539: LCLLPC>2.3 CO; 2CrossRefGoogle Scholar
  8. Eckmann J-P, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 5: 973–977Google Scholar
  9. Elliott DF (1987) Digital signal processing. Academic Press, San DiegoGoogle Scholar
  10. Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14: 2779–2789CrossRefGoogle Scholar
  11. Garreaud R, Vuille M, Clement A (in press) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol DOI 10.1016/S0031-0182(03)00269-4Google Scholar
  12. Garreaud RD (1999) Multi-scale analysis of the summertime precipitation over the Central Andes. Mon Weather Rev 127: 901–921CrossRefGoogle Scholar
  13. Godfrey L, Lowenstein TK, Li J, Luoand S, Ku T-L, Alonso RN, Jordan TE (1997) Registro Continuo del Pleistocene Tardio Basado en un Testigo de Halita del Salar de Hombre Muerto, Argentina. In: VIII Congreso Geologico Chileno. Vol 1. pp 332–336Google Scholar
  14. Grosjean M, Cartajena I, Messerli B (1997) Mid-Holocene climate and culture change in the Atacama Desert, Northern Chile. Quat Res 48: 239–246 DOI 10.1006/qres.1997.1917CrossRefGoogle Scholar
  15. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293: 1304–1308 DOI 10.1126/science.1059725CrossRefPubMedGoogle Scholar
  16. Hermanns RL, Strecker MR (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina. GSA Bull 111: 934–948CrossRefGoogle Scholar
  17. Hoffmann JAJ (1975) Climate Atlas of South America – maps of mean temperature and precipitation. Unesco Cartographia, WMOGoogle Scholar
  18. Kantz H, Schreiber T (1997) Nonlinear time series analysis. University Press, Cambridge, UKGoogle Scholar
  19. Keefer DK, de France SD, Moseley ME, Richardson III JB, Satterlee DR, Day-Lewis AO (1998) Early maritime economy and El Niño events at Quebrada Tacahuay, Peru. Science 281: 1833–1835 DOI 10.1126/science.281.5384.1833CrossRefPubMedGoogle Scholar
  20. Kurths J, Herzel H (1987) An attractor in a solar time series. Physica D 25: 165–172 DOI 10.1016/0167-2789(87)90099-6CrossRefGoogle Scholar
  21. Ledru MP, Braga PIS, Soubiès F, Fournier M, Martin L, Suguio K, Turcq B (1996) The last 50,000 years in the Neotropics, Southern Brazil: evolution of vegetation and climate. Palaeogeogr Palaeoclimatol Palaeoecol 123: 239–257 DOI 10.1016/0031-0182(96)00105–8CrossRefGoogle Scholar
  22. Liu Z, Kutzbach J, Wu L (2000) Modeling climatic shift of El Niño variability in the Holocene. Geophys Res Lett 27: 2265–2268Google Scholar
  23. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco, USAGoogle Scholar
  24. Marwan N, Kurths J (2002) Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett A 302 (5–6): 299–307 DOI 10.1016/S0375-9601(02)01170-2Google Scholar
  25. Marwan N, Thiel M, Nowaczyk NR (2002) Cross recurrence plot based synchronization of time series. Nonlinear Proc Geophys 9(3/4): 325–331Google Scholar
  26. Nogués-Paegele J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125: 279–291CrossRefGoogle Scholar
  27. Oberhänsli H, Heinze P, Diester-Haass L, Wefer G (1990) Upwelling off Peru during the last 430,000 years and its relationship to the bottom-water environment, as deduced from coarse grain-size distributions and analyses of benthic foraminifers at holes 679D, 680B, and 681B, LEG 112. In: Suess E, von Huene R (eds) Proc Ocean Drilling Program. Scientific Results. Vol 112. pp 369–382Google Scholar
  28. Palmer TN (1999) A nonlinear dynamical perspective on climate prediction. J Clim 12: 575–591CrossRefGoogle Scholar
  29. Prohaska FJ (1976) The climate of Argentina, Paraguay and Urugay. Vol 12 of World survey of climatlogy. Elsevier, Amsterdam pp 13–73Google Scholar
  30. Rittenour TM, Brigham-Grette J, Mann ME (2000) El Niño climate teleconnections in New England during the Late Pleistocene. Science 288: 1039–1042PubMedGoogle Scholar
  31. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115: 1606–162CrossRefGoogle Scholar
  32. Saltzman B (1990) Three basic problems of paleoclimate modeling: a personal perspective and review. Clim Dyn 5: 67–78Google Scholar
  33. Sandweiss DH, Maasch KA, Burger RL, Richardson III JB, Rollins HB, Clement A (2001) Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29: 603–606CrossRefGoogle Scholar
  34. Schlittgen R, Streitberg BHJ (1999) Zeitreihenanalyse. Oldenbourg, GermanyGoogle Scholar
  35. Strecker MR, Marret R (1999) Kinematic evolution of fault ramps and its role in development of landslides and lakes in the northwestern Argentine Andes. Geology 27: 307–310CrossRefGoogle Scholar
  36. Takens F (1981) Detecting strange attractors in turbulence. Vol 898 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York, pp 366–381Google Scholar
  37. Trauth MH, Alonso RA, Haselton K, Hermanns R, Strecker MR (2000) Climate change and mass movements in the northwest Argentine Andes. Earth Planet Sci Lett 179: 243–256 DOI 10.1016/S0012-821X(00)00127-8CrossRefGoogle Scholar
  38. Trauth MH, Bookhagen B, Mueller AB, Strecker MR (2003) Late Pleistocene climate change and erosion in the Santa Maria basin, NW Argentina. J Sediment Res pp 73Google Scholar
  39. Trauth MH, Strecker MR (1999) Formation of landslide-dammed lakes during a wet period between 40,000 and 25,000 years BP in northwestern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 153: 277–287 DOI 10.1016/S0031-0182(99)00078-4CrossRefGoogle Scholar
  40. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the El Niño Southern Oscillation through a glacial-interglacial cycle. Science 291: 1511–1517 DOI 10.1126/science.1057969CrossRefPubMedGoogle Scholar
  41. Turcq B, Pressinotti MMN, Martin L (1997) Paleohydrology and paleoclimate of the past 33,000 years at the Tamaduá River, Central Brazil. Quat Res 47: 284–294 DOI 10.1006/qres.1997.1880CrossRefGoogle Scholar
  42. van der Hammen T, Absy ML (1994) Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109: 247–261Google Scholar
  43. Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int J Climatol 19: 1579–1600 DOI 10.1002/(SICI)1097-0088(19991130)19:14<1579∷AID-JOC441>3.0.CO;2-NGoogle Scholar
  44. Vuille M, Bradley RS, Keimig F (2000) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res 105: 12447–12460CrossRefGoogle Scholar
  45. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16: 285–317 DOI 10.1016/0167-2789(85)90011-9CrossRefGoogle Scholar
  46. Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. B Am Meteorol Soc 78: 2539–2558CrossRefGoogle Scholar
  47. Zbilut JP, Giuliani A, Webber CL Jr (1998) Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys Lett A 246: 122–128 DOI 10.1016/S0375-9601(98)00457-5CrossRefGoogle Scholar
  48. Zhou J, Lau K-M (1998) Does a monsoon climate exist over South America? J Clim 11: 1020–1040Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • N. Marwan
    • 1
  • M. H. Trauth
    • 2
  • M. Vuille
    • 3
  • J. Kurths
    • 1
  1. 1.Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany
  2. 2.Institute of of Earth Sciences, University of Potsdam, Potsdam 14415, Germany
  3. 3.Climate System Research Center, Department of Geosciences, University of Massachusetts, Amherst, USA

Personalised recommendations