Climate Dynamics

, Volume 21, Issue 2, pp 131–151 | Cite as

A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea

  • C. SchrumEmail author
  • U. Hübner
  • D. Jacob
  • R. Podzun


A hindcast experiment with a regional coupled atmosphere/ice/ocean model for the Baltic and North seas has been carried out. The experiment was performed over a full seasonal cycle and verified by comparisons with independent data. Further un-coupled model runs with the atmospheric and oceanic sub-models have been made and analyzed to evaluate the sensitivity of different coupling and regionalization strategies of atmospheric global climate variability to the regional system. Overall it could be shown that the regional coupled atmosphere/ice/ocean model is stable over a full seasonal cycle. Furthermore, the coupling on the regional scale turned out to be a clear improvement compared to the un-coupled run with the atmospheric model. The regional model results in the climate mode (without re-initialization) are of similar quality compared to atmospheric re-analysis for the North and Baltic seas, due to the stabilizing effect of the coupling. In the forecast mode, i.e. when no observational data are available to improve model estimates by assimilation, it can be expected that the usage of a regional coupled model system will improve the qualitiy of predictions strongly. Nevertheless, the response of the oceanic sub-system on the different regionalization strategies showed some differences important for local applications of the coupled system. Three different sensitive surface-parameters have been identified by the present study: the sea surface temperature and connected the sea ice, showing considerable sensitivity on the regionalization as well as on the coupling, and the sea surface elevation, showing a high sensitivity for the short term variability on the regionalization.


Eddy Kinetic Energy Regional Atmospheric Model Norwegian Trench Time Series Coefficient Full Seasonal Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was financed by the German Ministry of Science and Technology (BMBF) under the grant number 03F01185B (KLINO TP B, Principal Investigator: Corinna Schrum, Project Scientist: Udo Hübner). The authors wish to thank Lennart Bengtsson and Jan Backhaus who made the study possible. We wish to thank Frank Janssen for many useful discussions Gerd Becker who provided the weekly SST data for the North Sea, Sten Bergström, Bengt Carlson and Peter Damm for the freshwater run-off data and Jouko Launiainen for the sea surface elevation data at Degerby receive our grateful thanks. The global atmospheric data were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) with the kind assistance of the German climate computing centre (DKRZ).


  1. Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17: 173–265Google Scholar
  2. Asselin R (1972) Frequency filter for time integrations. Mon Weather Rev 104: 143–148Google Scholar
  3. Backhaus JO (1985) A three-dimensional model for the simulation of shelf sea dynamics. Dtsch Hydrogr Z 38: 165–187Google Scholar
  4. Becker GA, Pauly M (1996) Sea surface temperature changes in the North Sea and their causes. Ice J Mar Sci 53: 887–898CrossRefGoogle Scholar
  5. Becker GA, Frey H, Wegener G (1986) Atlas der Temperatur an der Oberfläche der Nordsee. Dtsch Hydrogr Z 17, pp 128Google Scholar
  6. Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23: 280–287Google Scholar
  7. Daji H (1995) Modelling studies of barotropic and baroclinic dynamics in the Bohai Sea. Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Germany. Reihe B: Ozeanographie 17, pp 126Google Scholar
  8. Damm P (1997) Die saisonale Salzgehalts- und Frischwasserverteilung in der Nordsee und ihre Bilanzierung. Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Germany, Reihe B: Ozeanogaphie 28, pp 259Google Scholar
  9. Davis HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102: 405–418Google Scholar
  10. Deutscher Wetterdienst (1995) Dokumentation des EM/DM Systems, Deutscher Wetterdienst, with contributions from Edelmann W, Majewski D, Schättler U, Prohl P, Heise E, Doms G, Ritter B, Link A, Gertz M, Hanisch T, Fischer E. Zentralamt, Abteilung Forschung, Postfach 10 04 65, 63004 Offenbach am Main, GermanyGoogle Scholar
  11. Gibson R, Kallberg P, Uppala S (1996) The ECMWF Re-analysis (ERA) projekt. ECMWF Newslett 73: 7–17Google Scholar
  12. Gustafsson N, Nyberg L, Omstedt A (1998) Coupling of a high-resolution atmospheric model and an ocean model for the Baltic Sea. Mon Weather Rev 126: 2882–2846CrossRefGoogle Scholar
  13. Hagedorn R (2000) Ein gekoppeltes Atmosphäre–Ozean-Modell für das Ostsee-Einzugsgebiet. Berichte aus dem Institut für Meereskunde, Christian-Albrechts-Universität Kiel, Germany 314, pp 184Google Scholar
  14. Hagedorn R, Lehmann A, Jacob D (2000) A coupled high resolution atmosphere–ocean model for the Baltex region. Meteorol Z 9: 7–20Google Scholar
  15. Harms I (1994) Numerische Modellstudie zur winterlichen Wassermassenformation in der Barentssee, Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Germany, Reihe B 7, pp 97Google Scholar
  16. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9: 815–846CrossRefGoogle Scholar
  17. Jakob C (1999) Cloud cover in the ECMWF Reanalysis. J Clim 12: 947–959CrossRefGoogle Scholar
  18. Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63: 119–129Google Scholar
  19. Jacob D, Van den Hurk BJJM, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Köpken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass BH, Smith RNB, Yang X (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77: 19–43CrossRefGoogle Scholar
  20. Jacobsen I, Heise E (1982) A new economic method for computation of the surface temperature in numerical models. Beitr Phys Atmos 55(2): 128–141Google Scholar
  21. Janssen F, Schrum C, Backhaus JO (1999) A climatological dataset of temperature and salinity for the North Sea and the Baltic Sea. Dtsch Hydrogr Z Suppl 9Google Scholar
  22. Janssen F, Schrum C, Hübner U, Backhaus JO (2001) Uncertainty analysis of a decadal simulation with a regional ocean model for the North Sea and Baltic Sea. Clim Res 18: 55–62Google Scholar
  23. Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. Meteorol Monogr 10, pp 84Google Scholar
  24. Launiainen J, Vihma T (1990) Meteorological, ice and water exchange conditions. Second periodic assessment of the state of the marine environment of the Baltic Sea, 1984–1988; Background document. Baltic Sea Environ Proc, Helsinki, Finland 35B: 22–33Google Scholar
  25. Leppäranta M (1981) An ice drift model for the Baltic Sea. Tellus 33: 583–596Google Scholar
  26. Leppäranta M, Zhang Z-H (1992) A viscous-plastic ice dynamic test model for the Baltic Sea. Finnish Institute of Marine Resources, Int Rep pp 14Google Scholar
  27. Majewski D (1991) The Europa-Modell of the Deutscher Wetterdienst. Seminar Proc ECMWF 2: 147–191Google Scholar
  28. Mellor GL, Durbin PA (1975) The structure and dynamics of the ocean surface mixed layer. J Phys Oceanogr 5: 718–728Google Scholar
  29. Mellor GL, Yamada T (1974) A hierarchy of turbulent closure models for planetary boundary layers. J Atmos Sci 31: 1791–1806CrossRefGoogle Scholar
  30. Paulsoen A, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7: 952–956CrossRefGoogle Scholar
  31. Pohlmann T (1996) Predicting the thermocline in a circulation model of the North Sea Part 1: model description, calibration and verification. Cont Shelf Res 16: 131–146CrossRefGoogle Scholar
  32. Reynolds RW, Smith TM (1994) Improved global sea surface temperature analysis using optimum interpolation. J Clim 7: 929–948CrossRefGoogle Scholar
  33. Ritter B, Geleyn J-F (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120: 303–325CrossRefGoogle Scholar
  34. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Report, 218, Hamburg, GermanyGoogle Scholar
  35. Schrum C (1997a) Thermocline development and instabilities at tidal mixing fronts. Results of an eddy resolving model for the German Bight. Cont Shelf Res 17: 689–716CrossRefGoogle Scholar
  36. Schrum C (1997b) A coupled ice-ocean model for the North Sea and the Baltic Sea. Sensitivity of the North Sea, Baltic Sea and Black Sea to anthropogenic and climatic changes. Nato ASI Ser., Kluwer Academic; Dordrecht, NL, pp 311–325Google Scholar
  37. Schrum C, Backhaus JO (1999) Sensitivity of atmosphere–ocean heat exchange and heat content in North Sea and Baltic Sea. A comparative assessment. Tellus 51A: 526–549Google Scholar
  38. Schrum C, Janssen F, Hübner U (2000) Recent climate modelling in North Sea and Baltic Sea, Part A: model description and validation. Berichte aus dem Zentrum für Meeres- und Klimaforschung Hamburg, Germany 37, pp 60Google Scholar
  39. Smith JA, Damm P, Skogen MD, Flather RA, Pätsch J (1996) An investigation into the variability of circulation and transport on the North-West European Shelf using three hydrodynamic models. Dtsch Hydrogr Z 48Google Scholar
  40. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon Weather Rev 117: 1641–1657CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute of Oceanography, Center for Marine and Climate Research, University of Hamburg, Troplowitzstraße 7,22529 Hamburg, Germany
  2. 2.Max-Planck Institute for Meteorology, Bundesstrasse 55, 20146 Hamburg, Germany

Personalised recommendations