Child's Nervous System

, Volume 35, Issue 8, pp 1295–1301 | Cite as

Pathogenesis of hydrocephalus in achondroplastic dwarfs: a review and presentation of a case followed for 22 years

  • Harold L. Rekate
Review Article



The purpose of this work is to review the pathogenesis and pathophysiology of hydrocephalus in patients with achondroplasia as a guide to its management throughout life.


A review of the literature related to neurosurgical issues in achondroplasia with specific focus on cerebrospinal fluid physics, clinical management, and outcome of affected individuals. Issues involved in this review are highlighted by a case report of a patient shunted for achondroplasia first shunted in infancy and followed for 22 years. Each of the management issues is explored with respect to this patient.


Head circumferences in achondroplasia are abnormally large in this condition usually caused by excess cerebrospinal fluid in the cortical subarachnoid space. Increase in ventricular size (hydrocephalus) is not rare but should not be treated unless rapidly progressive or symptomatic. The underlying cause of the abnormalities of cerebrospinal fluid dynamics relates to abnormal venous drainage at the skull base. Patients shunted in infancy for hydrocephalus usually remain dependent on the shunt for life, and crises of high intracranial pressure may occur with no distention of the ventricles.


In infants with achondroplasia, large heads and enlarged ventricles without symptoms should be watched initially for progression. If hydrocephalus progresses or if symptoms of intracranial hypertension occur, endoscopic third ventriculostomy can be tried. If shunt is necessary, it should have a high opening pressure and a device to retard siphoning. In the case of recurrent ventricular catheter blockage, it may be necessary to create a communication between the ventricles and the cortical subarachnoid space.


Hydrocephalus Achondroplastic dwarfs Endoscopic third ventriculostomy Slit ventricle syndrome 


Compliance with ethical standards

Conflict of interest

I the author of this review attest that I have no conflicts of interest related to any aspect of the paper.

Harold L. Rekate


  1. 1.
    Ramakrishnan VR, Steinbok P (2018) Hydrocephalus in achondroplasia and venous hypertension. In: Cinalli G, Sgouros S (eds) Pediatric hydrocephalus. Springer International Publishing, pp 1–24Google Scholar
  2. 2.
    Steinbok P, Hall J, Flodmark O (1989) Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 71(1):42–48CrossRefPubMedGoogle Scholar
  3. 3.
    Bosemani T, Orman G, Hergan B, Carson KA, Huisman TA, Poretti A (2015) Achondroplasia in children: correlation of ventriculomegaly, size of foramen magnum and jugular foramina, and emissary vein enlargement. Childs Nerv Syst 31(1):129–133CrossRefPubMedGoogle Scholar
  4. 4.
    Lundar T, Bakke SJ, Nornes H (1990) Hydrocephalus in an achondroplastic child treated by venous decompression at the jugular foramen. Case report. J Neurosurg 73(1):138–140CrossRefPubMedGoogle Scholar
  5. 5.
    Sainte-Rose C, Servant JM, Mayer M, Hirsch JF (1989) Hydrocephalus of venous origin. Neurochirurgie 35(6):383–389 410PubMedGoogle Scholar
  6. 6.
    Sainte-Rose C, LaCombe J, Pierre-Kahn A, Renier D, Hirsch JF (1984) Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60(4):727–736CrossRefPubMedGoogle Scholar
  7. 7.
    Swift D, Nagy L, Robertson B (2012) Endoscopic third ventriculostomy in hydrocephalus associated with achondroplasia. J Neurosurg Pediatr 9(1):73–81CrossRefPubMedGoogle Scholar
  8. 8.
    Etus V, Ceylan S (2005) The role of endoscopic third ventriculostomy in the treatment of triventricular hydrocephalus seen in children with achondroplasia. J Neurosurg 103(3 Suppl):260–265PubMedGoogle Scholar
  9. 9.
    Nugent GR, Al-Mefty O, Chou S (1979) Communicating hydrocephalus as a cause of aqueductal stenosis. J Neurosurg 51(6):812–818CrossRefPubMedGoogle Scholar
  10. 10.
    King JA, Vachhrajani S, Drake JM, Rutka JT (2009) Neurosurgical implications of achondroplasia. J Neurosurg Pediatr 4(4):297–306CrossRefPubMedGoogle Scholar
  11. 11.
    Moss ML (1975) Functional anatomy of cranial synostosis. Childs Brain 1(1):22–33PubMedGoogle Scholar
  12. 12.
    Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ (1996) Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology 46(1):198–202CrossRefPubMedGoogle Scholar
  13. 13.
    Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pollay M (2012) Overview of the CSF dual outflow system. Acta Neurochir Suppl 113:47–50CrossRefPubMedGoogle Scholar
  15. 15.
    Shulman K, Ransohoff J (1965) Sagittal sinus venous pressure in hydrocephalus. J Neurosurg 23(2):169–173CrossRefPubMedGoogle Scholar
  16. 16.
    Priestley BL, Lorber J (1981) Ventricular size and intelligence in achondroplasia. Z Kinderchir 34(4):320–326PubMedGoogle Scholar
  17. 17.
    Ireland PJ, Ware RS, Donaghey S, McGill J, Zankl A, Pacey V, Ault J, Savarirayan R, Sillence D, Thompson E, Townshend S, Johnston LM (2013) The effect of height, weight and head circumference on gross motor development in achondroplasia. J Paediatr Child Health 49(2):E122–E127CrossRefPubMedGoogle Scholar
  18. 18.
    Tofts L, Das S, Collins F, Burton KLO (2017) Growth charts for Australian children with achondroplasia. Am J Med Genet A 173(8):2189–2200CrossRefPubMedGoogle Scholar
  19. 19.
    Merker A, Neumeyer L, Hertel NT, Grigelioniene G, Makitie O, Mohnike K et al (2018) Growth in achondroplasia: development of height, weight, head circumference, and body mass index in a European cohort. Am J Med Genet A 176(8):1723–1734CrossRefPubMedGoogle Scholar
  20. 20.
    Horton WA, Rotter JI, Rimoin DL, Scott CI, Hall JG (1978) Standard growth curves for achondroplasia. J Pediatr 93(3):435–438CrossRefPubMedGoogle Scholar
  21. 21.
    Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16(1):9–15CrossRefPubMedGoogle Scholar
  22. 22.
    Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:2CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kulkarni AV, Schiff SJ, Mbabazi-Kabachelor E, Mugamba J, Ssenyonga P, Donnelly R, Levenbach J, Monga V, Peterson M, MacDonald M, Cherukuri V, Warf BC (2017) Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. N Engl J Med 377(25):2456–2464CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Erdincler P, Dashti R, Kaynar MY, Canbaz B, Ciplak N, Kuday C (1997) Hydrocephalus and chronically increased intracranial pressure in achondroplasia. Childs Nerv Syst 13(6):345–348CrossRefPubMedGoogle Scholar
  25. 25.
    Rekate HL (1993) Classification of slit-ventricle syndromes using intracranial pressure monitoring. Pediatr Neurosurg 19(1):15–20CrossRefPubMedGoogle Scholar
  26. 26.
    Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatr 2(1):1–11CrossRefPubMedGoogle Scholar
  27. 27.
    McNatt SA, Kim A, Hohuan D, Krieger M, McComb JG (2008) Pediatric shunt malfunction without ventricular dilatation. Pediatr Neurosurg 44(2):128–132CrossRefPubMedGoogle Scholar
  28. 28.
    Albright AL, Tyler-Kabara E (2001) Slit-ventricle syndrome secondary to shunt-induced suture ossification. Neurosurgery 48(4):764–769 discussion 9-70PubMedGoogle Scholar
  29. 29.
    Epstein F, Lapras C, Wisoff JH (1988) Slit-ventricle syndrome’: etiology and treatment. Pediatr Neurosci 14(1):5–10CrossRefPubMedGoogle Scholar
  30. 30.
    Miller JP, Cohen AR, Rekate HL (2010) Slit ventricle syndrome. In: Jallo GI, Kothbauer KF, Pradilla G (eds) Controversies in pediatric neurosurgery. Thieme Medical Publisher, Inc., New York, pp 51–72Google Scholar
  31. 31.
    Le H, Yamini B, Frim DM (2002) Lumboperitoneal shunting as a treatment for slit ventricle syndrome. Pediatr Neurosurg 36(4):178–182CrossRefPubMedGoogle Scholar
  32. 32.
    Rekate HL (2004) The slit ventricle syndrome: advances based on technology and understanding. Pediatr Neurosurg 40(6):259–263CrossRefPubMedGoogle Scholar
  33. 33.
    Nadkarni TD, Rekate HL (2005) Treatment of refractory intracranial hypertension in a spina bifida patient by a concurrent ventricular and cisterna magna-to-peritoneal shunt. Childs Nerv Syst 21(7):579–582CrossRefPubMedGoogle Scholar
  34. 34.
    Rekate HL, Nadkarni T, Wallace D (2006) Severe intracranial hypertension in slit ventricle syndrome managed using a cisterna magna-ventricle-peritoneum shunt. J Neurosurg 104(4 Suppl):240–244PubMedGoogle Scholar
  35. 35.
    Engel M, Carmel PW, Chutorian AM (1979) Increased intraventricular pressure without ventriculomegaly in children with shunts: “normal volume” hydrocephalus. Neurosurgery. 5(5):549–552CrossRefPubMedGoogle Scholar
  36. 36.
    Hamilton MG, Price AV (2012) Syndrome of inappropriately low-pressure acute hydrocephalus (SILPAH). Acta Neurochir Suppl 113:155–159CrossRefPubMedGoogle Scholar
  37. 37.
    Filippidis AS, Kalani MY, Nakaji P, Rekate HL (2011) Negative-pressure and low-pressure hydrocephalus: the role of cerebrospinal fluid leaks resulting from surgical approaches to the cranial base. J Neurosurg 115(5):1031–1037CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Donald and Barbara Zucker Hofstra Northwell School of MedicineHempsteadUSA
  2. 2.NeurosurgeryDonald and Barbara Zucker Hofstra Northwell School of MedicineHempsteadUSA

Personalised recommendations