Child's Nervous System

, Volume 35, Issue 5, pp 769–774 | Cite as

An investigation of the ocular toxic effects of levetiracetam therapy in children with epilepsy

  • Betul Diler DurgutEmail author
  • Adem Turk
  • Elif Acar Arslan
  • Tulay Kamasak
  • Sevim Sahin
  • Beril Dilber
  • Tugce Turkcan Soguksulu
  • Ali Cansu
Original Article



To investigate the potential toxic effects of levetiracetam monotherapy on ocular tissues in cases of pediatric epilepsy using optical coherence tomography (OCT).


Thirty epileptic children (group 1) receiving levetiracetam monotherapy at a dosage of 20–40 mg/kg/day for at least 1 year with a first diagnosis of epilepsy and 30 age- and gender-matched healthy children (group 2) were included in the study. In addition to a detailed eye examination, peripapillary retinal nerve fiber layer (RNFL) thickness, ganglion cell complex (GCC) thickness, foveal thickness (FT), and central corneal thickness (CCT) were measured in all children by means of spectral domain OCT. The data obtained from the two groups were then subjected to statistical analysis.


The mean age of both groups was 12 ± 3.64 years [1–12]. The mean duration of levetiracetam in group 1 was 24.07 ± 12.82 months. Mean RNFL values in groups 1 and 2 were 106.1 ± 10.42 and 104.98 ± 10.04 μm, mean GCC values were 94.72 ± 6.26 and 94.4 ± 6 μm, mean FT values were 240.73 ± 17.94 and 240.77 ± 15.97 μm, and mean CCT values were 555.1 ± 44.88 and 540.97 ± 32.65 μm, respectively. No significant difference was determined between the two groups in terms of any parameter. Best corrected visual acuity values of the subjects in both groups were 10/10, and no color vision or visual field deficit was determined.


Levetiracetam monotherapy causes no significant function or morphological change in ocular tissues in pediatric epilepsies.


Epilepsy Optical coherence Levetiracetam Tomography 


Compliance with ethical standards

Ethical approval was granted for the study. Informed consent was received from all children and their parents.

Conflict of interest

The authors have no proprietary or financial interest in this study.


  1. 1.
    López L, Thomson A, Rabinowicz AL (1999) Assessment of colour visionin epileptic patients exposed to single-drug therapy. Eur Neurol 41(4):201–205CrossRefGoogle Scholar
  2. 2.
    Moseng L, Sæter M, Mørch-Johnsen GH, Hoff JM, Gajda A, Brodtkorb E, Midelfart A (2011) Retinal nerve fibre layer attenuation: clinical indicator for vigabatrin toxicity. Acta Ophthalmol 89(5):452–458CrossRefGoogle Scholar
  3. 3.
    Duboc A, Hanoteau N, Simonutti M, Rudolf G, Nehlig A, Sahel JA, Picaud S (2004) Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol 55(5):695–705CrossRefGoogle Scholar
  4. 4.
    Lawthom C, Smith PE, Wild JM (2009) Nasal retinal nerve fiber layerattenuation: a biomarker for vigabatrin toxicity. Ophthalmology 116:565–571CrossRefGoogle Scholar
  5. 5.
    Tan J, Paquette V, Levine M, Ensom MHH (2017) Levetiracetam clinical pharmacokinetic monitoring in pediatric patients with epilepsy. Clin Pharmacokinet 56(11):1267–1285CrossRefGoogle Scholar
  6. 6.
    Fountain NB, Conry JA, Rodríguez-Leyva I, Gutierrez-Moctezuma J, Salas E, Coupez R, Stockis A, Lu ZS. Prospective assessment of levetiracetam pharmacokinetics during dose escalation in 4- to 12-yearold children with partial-onset seizures on concomitant carbamazepine or valproate. Epilepsy Res 2007;74(1):60–69. Epub 2007 Jan 31Google Scholar
  7. 7.
    Abou-Khalil B (2008) Levetiracetam in the treatment of epilepsy. Neuropsychiatr Dis Treat 4(3):507–523CrossRefGoogle Scholar
  8. 8.
    Lyseng-Williamson KA (2011) Levetiracetam: a review of its use inepilepsy. Drugs 71(4):489–514Google Scholar
  9. 9.
    Lee T, Warrick BJ, Sarangarm P, Alunday RL, Bussmann S, Smolinske SC, Seifert SA (2017) Levetiracetam in toxic seizures. Clin Toxicol (Phila):1–7.
  10. 10.
    Kostanyan T, Wollstein G, Schuman JS (2015) New developments inoptical coherence tomography. Curr Opin Ophthalmol 26(2):110–115CrossRefGoogle Scholar
  11. 11.
    Turk A, Ceylan OM, Arici C, Keskin S, Erdurman C, Durukan AH, Mutlu FM, Altinsoy HI (2012) Evaluation of the nerve fiber layer and macula in the eyes of healthy children using spectral-domain optical coherence tomography. Am J Ophthalmol 153:552–559CrossRefGoogle Scholar
  12. 12.
    Turk A, Kola M, Akyol N, Erdol H, Imamoglu HI (2010) Optical coherence tomography findings of active ocular toxoplasmosis complicating with serous macular detachment. Turkiye Klinikleri J Med Sci 30:1409–1412CrossRefGoogle Scholar
  13. 13.
    Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW,Newton2011 CR. Incidence of epilepsy: a systematic review and meta-analysis. Neurology ;77(10):1005–1012Google Scholar
  14. 14.
    Aktaş Z, Cansu A, Erdoğan D, Take G, Goktas G, Ozdek S, Serdaroglu A (2009) Retinal ganglion cell toxicity due to oxcarbazepine and valproic acid treatment in rat. Seizure 18(6):396–399CrossRefGoogle Scholar
  15. 15.
    Simister RJ, Sander JW, Koepp MJ (2007) Long-term retention rates ofnew antiepileptic drugs in adults with chronic epilepsy and learning disability. Epilepsy Behav 10(2):336–339 Epub 2007 Jan 30CrossRefGoogle Scholar
  16. 16.
    Verrotti A, Manco R, Matricardi S, Franzoni E, Chiarelli F (2007) Antiepileptic drugs and visual function. Pediatr Neurol 36(6):353–360CrossRefGoogle Scholar
  17. 17.
    Han H, Qu W, Kang H, Hu X, Zhen G, Zhu S, Xue Z (2012) Effect ofsecond-generation antiepileptic drugs on diplopia: a meta-analysis of placebo-controlled studies. J Huazhong Univ Sci Technolog Med Sci 32(4):557–562CrossRefGoogle Scholar
  18. 18.
    Rao HL, Kumar AU, Kumar A, Chary S, Senthil S, Vaddavalli PK, Garudadri CS (2011) Evaluation of central corneal thickness measurement with RTVue spectral domain optical coherence tomography in normal subjects. Cornea 30(2):121–126CrossRefGoogle Scholar
  19. 19.
    Zhang X, Iverson SM, Tan O, Huang D. Effect of signal intensity on measurement of ganglion cell complex and retinal nerve fiber layer scans in Fourier-domain optical coherence tomography. Transl Vis SciTechnol 2015; 4(5): 7. Published online 2015 Oct 1Google Scholar
  20. 20.
    Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, SchumanJS, Duker JS. Assessment of artifacts and reproducibility across spectraland time-domain optical coherence tomography devices. Ophthalmology 2009;116(10):1960–1970Google Scholar
  21. 21.
    Kanski JJ. Clinical ophthalmology: a systematic approach (4th ed.) Butterworth-Heinemann, Ajanta Offset, New Delhi, 2000, p.96–98Google Scholar
  22. 22.
    Whitcher JP, Srinivasan M, Upadhyay MP (2001) Corneal blindness: aglobal perspective. Bull World Health Organ 79(3):214–221 Epub 2003 Jul 7Google Scholar
  23. 23.
    Steinkuller PG, Du L, Gilbert C, Foster A, Collins ML, Coats DK (1999) Childhood blindness. J AAPOS 3(1):26–32CrossRefGoogle Scholar
  24. 24.
    Ceylan OM, Turk A, Erdurman C, Mumcuoglu T, Erdem U, GokceG, Dagli S. Comparison of oculus pentacam and stratus optical coherence tomography for measurement of central corneal thickness. Cornea 2011;30(6):670–674Google Scholar
  25. 25.
    Pavone A, Cardile V (2003) An in vitro study of new antiepileptic drugsand astrocytes. Epilepsia 44(Suppl 10):34–39CrossRefGoogle Scholar
  26. 26.
    Doonan F, Groeger G, Cotter TG (2012) Preventing retinal apoptosis—is there a common therapeutic theme? Exp Cell Res 318(11):1278–1284CrossRefGoogle Scholar
  27. 27.
    Ma W, Wang SZ (2006) The final fates of neurogenin2-expressing cellsinclude all major neuron types in the mouse retina. Mol Cell Neurosci 31(3):463–469 Epub 2005 Dec 20CrossRefGoogle Scholar
  28. 28.
    García DM, Koke JR (2009) Astrocytes as gate-keepers in optic nerveregeneration--a mini-review. Comp Biochem Physiol A Mol Integr Physiol 152(2):135–138CrossRefGoogle Scholar
  29. 29.
    Butt AM, Pugh M, Hubbard P, James G (2004) Functions of optic nerveglia: axoglial signalling in physiology and pathology. Eye (Lond) 18(11):1110–1121CrossRefGoogle Scholar
  30. 30.
    Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillaryacidic protein expression in astrocytes by nitric oxide. J Neurosci 26(18):4930–4939CrossRefGoogle Scholar
  31. 31.
    Cullen DK, Simon CM, LaPlaca MC (2007) Strain rate-dependentinduction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res 1158:103–115 Epub 2007 May 3CrossRefGoogle Scholar
  32. 32.
    Ueta T, Inoue T, Furukawa T, Tamaki Y, Nakagawa Y, Imai H, Yanagi Y (2012) Glutathione peroxidase 4 is required for maturation of photoreceptor cells. J Biol Chem 287(10):7675–7682CrossRefGoogle Scholar
  33. 33.
    Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916CrossRefGoogle Scholar
  34. 34.
    Tinari A, Giammarioli AM, Manganelli V, Ciarlo L, Malorni W (2008) Analyzing morphological and ultrastructural features in cell death. Methods Enzymol 442:1–26CrossRefGoogle Scholar
  35. 35.
    Mosinger Ogilvie J, Deckwerth TL, Knudson CM, Korsmeyer SJ (1998) Suppression of developmental retinal cell death but not of photoreceptor degeneration in Bax-deficient mice. Invest Ophthalmol Vis Sci 39(9):1713–1720Google Scholar
  36. 36.
    Chen J, Flannery JG, LaVail MM, Steinberg RH, Xu J, Simon MI. Bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc Natl Acad Sci U S A 1996 Ju 9;93(14):7042–7047Google Scholar
  37. 37.
    Elmore S (2007) Apoptosis: a review of programmed cell death. ToxicolPathol 35(4):495–516Google Scholar
  38. 38.
    Hunter AM, LaCasse EC, Korneluk RG (2007) The inhibitors ofapoptosis (IAPs) as cancer targets. Apoptosis 12(9):1543–1568CrossRefGoogle Scholar
  39. 39.
    Kwiecińska P, Taubøll E, Gregoraszczuk EL (2012) Comparison of the effects of valproic acid and levetiracetam on apoptosis in the human ovarian cancer cell line OVCAR-3. Pharmacol Rep 64(3):603–614CrossRefGoogle Scholar
  40. 40.
    Kwiecińska P, Wiśniewska J, Gregoraszczuk EŁ (2011) Effects ofvalproic acid (VPA) and levetiracetam (LEV) on proliferation, apoptosis and hormone secretion of the human choriocarcinoma BeWo cell line. Pharmacol Rep 63(5):1195–1202CrossRefGoogle Scholar
  41. 41.
    Stettner M, Dehmel T, Mausberg AK, Köhne A, Rose CR, Kieseier BC (2011) Levetiracetam exhibits protective properties on rat Schwann cells in vitro. J Peripher Nerv Syst 16(3):250–260CrossRefGoogle Scholar
  42. 42.
    Dereci S, Koca T, Akçam M, Türkyilmaz K (2015) An evaluation of peripapillary retinal nerve fiber layer thickness in children with epilepsy receiving treatment of valproic acid. Pediatr Neurol 53(1):53–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of Child NeurologyKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Faculty of Medicine, Department of OphthalmologyKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations