Child's Nervous System

, Volume 35, Issue 2, pp 301–308 | Cite as

Radiosurgical treatment of arteriovenous malformations in a retrospective study group of 33 children: the importance of radiobiological scores

  • Jody Filippo CapitanioEmail author
  • Pietro Panni
  • Alberto Luigi Gallotti
  • Carmen Rosaria Gigliotti
  • Francesco Scomazzoni
  • Stefania Acerno
  • Antonella del Vecchio
  • Pietro Mortini
Original Paper



Arteriovenous malformations’ (AVMs) obliteration depends on several factors; among the many factors that must be considered to obtain a high rate of obliteration and a low rate of complications, Flickinger-Pollock Score (FPS) seems to have an important role but still have to be validated in the pediatric population while Paddick-Conformity Index (PCI) still has no demonstration of its utility on the outcome and is considered only as a treatment quality marker.


We retrospectively analyzed 33 consecutive children (2–18 years) with an AVM, treated with stereotactic radiosurgery Gamma Knife (SRS-GK) from 2001 to 2014 in our institution. We assess angiographic (DSA) Obliteration Rate (OR) as well FPS and PCI to draw conclusions.


DSA-OR was 60.6% with a rate of hemorrhage of 0%. median target volume (TV) was 3.60 cc (mean 4.32 ± 3.63; range 0.15–14.2), median PD was 22 Gy (mean 21.4 ± 2.6; range 16.5–25). Median percentage of coverage was 98% (mean 97 ± 3; range 84–100). The median modified FPS was 0.78 (mean 0.89 ± 0.52; range 0.21–2.1) and highly correlate with OR (p = 0.01). The median PCI was 0.65 (mean 0.65 ± 0.14; range 0.34–0.95) A PCI lower than 0.57 highly correlates with final OR (p = 0.02).


SRS-GK was safe and gradually effective in children. A prescription dose-like that used in adult population (i.e. > 18 and between 20 and 25 Gy) is essential to achieve obliteration. A PD of 23 Gy and 22 Gy did impact OR, respectively (p = 0.02) and (p = 0.05). FPS and PCI are valuable scores that seem to correlate with the OR also in the pediatric population although further prospective studies are needed to confirm these observations.


Children Gamma knife Pediatric radiosurgery Pediatric brain malformations 



Arterovenous malformations


Gamma Knife


Stereotactic radiosurgery


Digital subtraction angiography


Prescription dose


Obliteration rate


Paddick Conformity Index


Flickinger Pollock Score


Magnetic resonance imaging


Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliationswith or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Kiris T, Sencer A, Sahinbas M, Sencer S, Imer M, Izgi N (2005) Surgical results in pediatric Spetzler-Martin grades I-III intracranial arteriovenous malformations. Childs Nerv Syst 21:69–74 discussion 75-66CrossRefGoogle Scholar
  2. 2.
    Dinca EB, de Lacy P, Yianni J, Rowe J, Radatz MW, Preotiuc-Pietro D, Kemeny AA (2012) Gamma knife surgery for pediatric arteriovenous malformations: a 25-year retrospective study. J Neurosurg Pediatr 10:445–450CrossRefGoogle Scholar
  3. 3.
    Pan DH, Kuo YH, Guo WY, Chung WY, Wu HM, Liu KD, Chang YC, Wang LW, Wong TT (2008) Gamma Knife surgery for cerebral arteriovenous malformations in children: a 13-year experience. J Neurosurg Pediatr 1:296–304CrossRefGoogle Scholar
  4. 4.
    Chung WY, Shiau CY, Wu HM, Liu KD, Guo WY, Wang LW, Pan DH (2008) Staged radiosurgery for extra-large cerebral arteriovenous malformations: method, implementation, and results. J Neurosurg 109(Suppl):65–72CrossRefGoogle Scholar
  5. 5.
    Kano H, Kondziolka D, Flickinger JC, Yang HC, Flannery TJ, Awan NR, Niranjan A, Novotny J, Lunsford LD (2012) Stereotactic radiosurgery for arteriovenous malformations, part 2: management of pediatric patients. J Neurosurg Pediatr 9:1–10CrossRefGoogle Scholar
  6. 6.
    Iizuka Y, Rodesch G, Garcia-Monaco R, Alvarez H, Burrows P, Hui F, Lasjaunias P (1992) Multiple cerebral arteriovenous shunts in children: report of 13 cases. Childs Nerv Syst 8:437–444CrossRefGoogle Scholar
  7. 7.
    Garcia-Monaco R, De Victor D, Mann C, Hannedouche A, Terbrugge K, Lasjaunias P (1991) Congestive cardiac manifestations from cerebrocranial arteriovenous shunts. Endovascular management in 30 children. Childs Nerv Syst 7:48–52CrossRefGoogle Scholar
  8. 8.
    Willinsky RA, Lasjaunias P, Terbrugge K, Burrows P (1990) Multiple cerebral arteriovenous malformations (AVMs). Review of our experience from 203 patients with cerebral vascular lesions. Neuroradiology 32:207–210CrossRefGoogle Scholar
  9. 9.
    Cumming GR (1980) Circulation in neonates with intracranial arteriovenous fistula and cardiac failure. Am J Cardiol 45:1019–1024CrossRefGoogle Scholar
  10. 10.
    Cronqvist S, Granholm L, Lundstrom NR (1972) Hydrocephalus and congestive heart failure caused by intracranial arteriovenous malformations in infants. J Neurosurg 36:249–254CrossRefGoogle Scholar
  11. 11.
    Lasjaunias P, Piske R, Terbrugge K, Willinsky R (1988) Cerebral arteriovenous malformations (C. AVM) and associated arterial aneurysms (AA). Analysis of 101 C. AVM cases, with 37 AA in 23 patients. Acta Neurochir 91:29–36CrossRefGoogle Scholar
  12. 12.
    Lasjaunias P, Berenstein A, Ter Brugge K (2012) Surgical Neuroangiography: 1 clinical vascular anatomy and variations. Springer, New YorkGoogle Scholar
  13. 13.
    Al-Shahi R, Warlow C (2001) A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain 124:1900–1926CrossRefGoogle Scholar
  14. 14.
    Brown RD Jr, Flemming KD, Meyer FB, Cloft HJ, Pollock BE, Link ML (2005) Natural history, evaluation, and management of intracranial vascular malformations. Mayo Clin Proc 80:269–281CrossRefGoogle Scholar
  15. 15.
    Al-Jarallah A, Al-Rifai MT, Riela AR, Roach ES (2000) Nontraumatic brain hemorrhage in children: etiology and presentation. J Child Neurol 15:284–289CrossRefGoogle Scholar
  16. 16.
    Smyth MD, Sneed PK, Ciricillo SF, Edwards MS, Wara WM, Larson DA, Lawton MT, Gutin PH, McDermott MW (2002) Stereotactic radiosurgery for pediatric intracranial arteriovenous malformations: the University of California at San Francisco experience. J Neurosurg 97:48–55CrossRefGoogle Scholar
  17. 17.
    Valavanis A, Yasargil MG (1998) The endovascular treatment of brain arteriovenous malformations. Adv Tech Stand Neurosurg 24:131–214CrossRefGoogle Scholar
  18. 18.
    Taeshineetanakul P, Krings T, Geibprasert S, Menezes R, Agid R, Terbrugge KG, Schwartz ML (2012) Angioarchitecture determines obliteration rate after radiosurgery in brain arteriovenous malformations. Neurosurgery 71:1071–1078 discussion 1079CrossRefGoogle Scholar
  19. 19.
    Franzin A, Panni P, Spatola G, Vecchio AD, Gallotti AL, Gigliotti CR, Cavalli A, Donofrio CA, Mortini P (2016) Results of volume-staged fractionated Gamma Knife radiosurgery for large complex arteriovenous malformations: obliteration rates and clinical outcomes of an evolving treatment paradigm. J Neurosurg 125:104–113Google Scholar
  20. 20.
    Engel J Jr, Burchfiel J, Ebersole J, Gates J, Gotman J, Homan R, Ives J, King D, Lieb J, Sato S, Wilkus R (1993) Long-term monitoring for epilepsy. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 87:437–458CrossRefGoogle Scholar
  21. 21.
    Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483CrossRefGoogle Scholar
  22. 22.
    Pollock BE, Flickinger JC (2008) Modification of the radiosurgery-based arteriovenous malformation grading system. Neurosurgery 63:239–243 discussion 243CrossRefGoogle Scholar
  23. 23.
    Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93(Suppl 3):219–222Google Scholar
  24. 24.
    Potts MB, Sheth SA, Louie J, Smyth MD, Sneed PK, McDermott MW, Lawton MT, Young WL, Hetts SW, Fullerton HJ, Gupta N (2014) Stereotactic radiosurgery at a low marginal dose for the treatment of pediatric arteriovenous malformations: obliteration, complications, and functional outcomes. J Neurosurg Pediatr 14:1–11CrossRefGoogle Scholar
  25. 25.
    Reyns N, Blond S, Gauvrit JY, Touzet G, Coche B, Pruvo JP, Dhellemmes P (2007) Role of radiosurgery in the management of cerebral arteriovenous malformations in the pediatric age group: data from a 100-patient series. Neurosurgery 60:268–276 discussion 276CrossRefGoogle Scholar
  26. 26.
    Kano H, Kondziolka D, Flickinger JC, Yang HC, Flannery TJ, Awan NR, Niranjan A, Novotny J Jr, Lunsford LD (2012) Stereotactic radiosurgery for arteriovenous malformations, Part 3: outcome predictors and risks after repeat radiosurgery. J Neurosurg 116:21–32CrossRefGoogle Scholar
  27. 27.
    Starke RM, Ding D, Kano H, Mathieu D, Huang PP, Feliciano C, Rodriguez-Mercado R, Almodovar L, Grills IS, Silva D, Abbassy M, Missios S, Kondziolka D, Barnett GH, Dade Lunsford L, Sheehan JP (2016) International multicenter cohort study of pediatric brain arteriovenous malformations. Part 2: outcomes after stereotactic radiosurgery. J Neurosurg Pediatr 19(2):136–148.
  28. 28.
    Cohen-Gadol AA, Pollock BE (2006) Radiosurgery for arteriovenous malformations in children. J Neurosurg 104:388–391Google Scholar
  29. 29.
    Shin M (2002) [Gamma knife radiosurgery for arteriovenous malformations: anatomy, techniques, and avoidance]. No shinkei geka. Neurol Surg 30:703–714Google Scholar
  30. 30.
    Nataf F, Schlienger M, Lefkopoulos D, Merienne L, Ghossoub M, Foulquier JN, Deniaud-Alexandre E, Mammar H, Meder JF, Turak B, Huart J, Touboul E, Roux FX (2003) Radiosurgery of cerebral arteriovenous malformations in children: a series of 57 cases. Int J Radiat Oncol Biol Phys 57:184–195CrossRefGoogle Scholar
  31. 31.
    Yen CP, Monteith SJ, Nguyen JH, Rainey J, Schlesinger DJ, Sheehan JP (2010) Gamma Knife surgery for arteriovenous malformations in children. J Neurosurg Pediatr 6:426–434CrossRefGoogle Scholar
  32. 32.
    Yeon JY, Shin HJ, Kim JS, Hong SC, Lee JI (2011) Clinico-radiological outcomes following gamma knife radiosurgery for pediatric arteriovenous malformations. Childs Nerv Syst 27:1109–1119CrossRefGoogle Scholar
  33. 33.
    Umansky D, Corn BW, Strauss I, Shtraus N, Constantini S, Frolov V, Maimon S, Kanner AA (2018) Combined treatment approach to cerebral arteriovenous malformation in pediatric patients: stereotactic radiosurgery to partially Onyx-embolized AVM. Childs Nerv Syst 34:2269–2274CrossRefGoogle Scholar
  34. 34.
    Lasjaunias PtB KG, Berenstein A (2006) Surgical Neuroangiography: Vol. 3: Clinical and Interventional Aspects in Children. Springer, BerlinCrossRefGoogle Scholar
  35. 35.
    Pollock BE (2013) Arteriovenous malformations and radiosurgery. J Neurosurg 119:532–534CrossRefGoogle Scholar
  36. 36.
    Zeiler FA, Janik MK, McDonald PJ, Kaufmann AM, Fewer D, Butler J, Schroeder G, West M (2016) Gamma Knife radiosurgery for pediatric arteriovenous malformations: a Canadian experience. Can J Neurol Sci 43:82–86CrossRefGoogle Scholar
  37. 37.
    Yen CP, Jain S, Haq IU, Jagannathan J, Schlesinger D, Sheehan J, Steiner L (2010) Repeat Gamma Knife surgery for incompletely obliterated cerebral arteriovenous malformations. Neurosurgery 67:55–64 discussion 64CrossRefGoogle Scholar
  38. 38.
    Ditty BJ, Omar NB, Foreman PM, Miller JH, Kicielinski KP, Fisher WS 3rd, Harrigan MR (2016) Seizure outcomes after stereotactic radiosurgery for the treatment of cerebral arteriovenous malformations. J Neurosurg 1–7Google Scholar
  39. 39.
    Patel TR, Chiang VL (2014) Secondary neoplasms after stereotactic radiosurgery. World Neurosurg 81:594–599CrossRefGoogle Scholar
  40. 40.
    Xhumari A, Rroji A, Enesi E, Bushati T, Sallabanda Diaz K, Petrela M (2015) Glioblastoma after AVM radiosurgery. Case report and review of the literature. Acta Neurochir 157:889–895CrossRefGoogle Scholar
  41. 41.
    Pandey P, Marks MP, Harraher CD, Westbroek EM, Chang SD, Do HM, Levy RP, Dodd RL, Steinberg GK (2012) Multimodality management of Spetzler-Martin grade III arteriovenous malformations. J Neurosurg 116:1279–1288CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jody Filippo Capitanio
    • 1
    Email author
  • Pietro Panni
    • 1
  • Alberto Luigi Gallotti
    • 1
  • Carmen Rosaria Gigliotti
    • 2
  • Francesco Scomazzoni
    • 3
  • Stefania Acerno
    • 1
  • Antonella del Vecchio
    • 2
  • Pietro Mortini
    • 1
  1. 1.Department of Neurosurgery and Gamma Knife UnitIRCCS San Raffaele Scientific InstituteMilanItaly
  2. 2.Department of Medical PhysicsIRCCS San Raffaele Scientific InstituteMilanItaly
  3. 3.Department of NeuroradiologyIRCCS San Raffaele Scientific InstituteMilanItaly

Personalised recommendations