Child's Nervous System

, Volume 34, Issue 8, pp 1563–1571 | Cite as

Prenatal diagnosis of Apert syndrome using ultrasound, magnetic resonance imaging, and three-dimensional virtual/physical models: three case series and literature review

  • Heron Werner
  • Pedro Castro
  • Pedro Daltro
  • Jorge Lopes
  • Gerson Ribeiro
  • Edward Araujo JúniorEmail author
Original Paper



This aimed to describe the prenatal diagnosis of three cases of Apert syndrome using two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), and 3D virtual/physical models.


We retrospectively analyzed three cases of Apert syndrome at our service. The prenatal diagnostic methods used were 2D ultrasound, 3D ultrasound in conventional and HDlive rendering modes, T2-weighted MRI sequences, and 3D virtual/physical models from MRI or 3D ultrasound scan data. All imaging methods were performed by one observer. All prenatal diagnoses were confirmed by autopsy in cases of termination of pregnancy or genetic assessment during the postnatal period.


Mean ± standard deviation of maternal and gestational age at the time of diagnosis was 36.5 ± 3.5 years and 32 ± 4.2 weeks, respectively. Main 2D/3D ultrasound and MRI findings were craniosynostosis, hypertelorism, low ear implantation, increased kidneys dimensions, and syndactyly of hands and feet. 3D virtual/physical models allowed 3D view of fetal head and extremity abnormalities. Termination of pregnancy occurred in two cases.


Prenatal 3D ultrasound and MRI enabled the identification of all Apert syndrome phenotypes. 3D virtual/physical models provided both the parents and the medical team a better understanding of fetal abnormalities.


Apert syndrome Prenatal diagnosis Three-dimensional ultrasound Magnetic resonance imaging Physical models 


Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

381_2018_3740_Fig9_ESM.gif (168 kb)
Figure S1

3D ultrasound in the conventional rendering mode (32 weeks) demonstrating the fetal profile. Note the low ear implantation. (GIF 168 kb)

381_2018_3740_MOESM1_ESM.tif (194 kb)
High resolution image (TIFF 193 kb)
381_2018_3740_Fig10_ESM.gif (197 kb)
Figure S2

2D and 3D ultrasound in the conventional rendering mode (32 weeks) demonstrating finger fusion in the hands. (GIF 196 kb)

381_2018_3740_MOESM2_ESM.tif (185 kb)
High resolution image (TIFF 184 kb)
381_2018_3740_Fig11_ESM.gif (312 kb)
Figure S3

2D and 3D ultrasound in the conventional rendering mode (32 weeks) demonstrating toe fusion. (GIF 311 kb)

381_2018_3740_MOESM3_ESM.tif (280 kb)
High resolution image (TIFF 280 kb)
381_2018_3740_Fig12_ESM.gif (281 kb)
Figure S4

Sagittal T2-weighted magnetic resonance imaging (32 weeks) and 3D reconstruction. Note the syndactyly (arrows). (GIF 281 kb)

381_2018_3740_MOESM4_ESM.tif (291 kb)
High resolution image (TIFF 291 kb)
381_2018_3740_Fig13_ESM.gif (281 kb)
Figure S5

3D ultrasound in conventional and HDlive rendering modes (26 weeks) demonstrating the fusion of fingers and toes (arrows). (GIF 281 kb)

381_2018_3740_MOESM5_ESM.tif (265 kb)
High resolution image (TIFF 265 kb)
381_2018_3740_Fig14_ESM.gif (185 kb)
Figure S6

Sagittal T2-weighted magnetic resonance imaging (26 weeks) demonstrating the typical syndrome and syndactyly of hands (arrow). (GIF 185 kb)

381_2018_3740_MOESM6_ESM.tif (243 kb)
High resolution image (TIFF 242 kb)
381_2018_3740_Fig15_ESM.gif (478 kb)
Figure S7

Pathological anatomy showing the face and fetal profile. Note the hypertelorism, frontal prominence, and low ear implantation. (GIF 478 kb)

381_2018_3740_MOESM7_ESM.tif (573 kb)
High resolution image (TIFF 572 kb)
381_2018_3740_Fig16_ESM.gif (316 kb)
Figure S8

Pathological anatomy demonstrating syndactyly of hands and feet. (GIF 316 kb)

381_2018_3740_MOESM8_ESM.tif (344 kb)
High resolution image (TIFF 344 kb)
381_2018_3740_Fig17_ESM.gif (283 kb)
Figure S9

2D and 3D ultrasound in the HDlive rendering mode (32 weeks) showing the fetal profile and face. Note the frontal prominence and broad and low nasal root. (GIF 282 kb)

381_2018_3740_MOESM9_ESM.tif (274 kb)
High resolution image (TIFF 274 kb)
381_2018_3740_Fig18_ESM.gif (444 kb)
Figure S10

3D ultrasound in the conventional rendering mode (32 weeks) demonstrating syndactyly of hands and feet (arrows). (GIF 444 kb)

381_2018_3740_MOESM10_ESM.tif (391 kb)
High resolution image (TIFF 391 kb)
381_2018_3740_Fig19_ESM.gif (224 kb)
Figure S11

T2-weighted sagittal, coronal, and axial magnetic resonance imaging (32 weeks). Note the frontal prominence and hypertelorism. (GIF 224 kb)

381_2018_3740_MOESM11_ESM.tif (303 kb)
High resolution image (TIFF 302 kb)
381_2018_3740_Fig20_ESM.gif (233 kb)
Figure S12

3D physical model (32 weeks) of the fetal face from 3D ultrasound scan data. (GIF 233 kb)

381_2018_3740_MOESM12_ESM.tif (250 kb)
High resolution image (TIFF 250 kb)
381_2018_3740_MOESM13_ESM.mp4 (30.3 mb)
Video S1 3D virtual navigation (26 weeks) of the fetal face and extremities. (MP4 30,980 kb)


  1. 1.
    Tolarova MM, Harris JA, Ordway DE, Vargervik K (1997) Birth prevalence, mutation rate, sex ratio, parents’ age, and ethnicity in Apert syndrome. Am J Med Genet 72(4):394–398.<394::AID-AJMG4>3.0.CO;2-R CrossRefPubMedGoogle Scholar
  2. 2.
    Cohen MM Jr, Kreiborg S, Lammer EJ, Cordero JF, Mastroiacovo P, Erickson JD, Roeper P, Martínez-Frías ML (1992) Birth prevalence study of the Apert syndrome. Am J Med Genet 42(5):655–659. CrossRefPubMedGoogle Scholar
  3. 3.
    Glaser RL, Broman KW, Schulman RL, Eskenazi B, Wyrobek AJ, Jabs EW (2003) The paternal-age effect in Apert syndrome is due, in part, to the increased frequency of mutations in sperm. Am J Hum Genet 73(4):939–947. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Helfer TM, Peixoto AB, Tonni G, Araujo Junior E (2016) Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography. Med Ultrason 18(3):378–385. CrossRefPubMedGoogle Scholar
  5. 5.
    Giancotti A, D’Ambrosio V, De Filippis A, Aliberti C, Pasquali G, Bernardo S, Manganaro L, PECRAM Study Group (2014) Comparison of ultrasound and magnetic resonance imaging in the prenatal diagnosis of Apert syndrome: report of a case. Childs Nerv Syst 30(8):1445–1448. PubMedCrossRefGoogle Scholar
  6. 6.
    David AL, Turnbull C, Scott R, Freeman J, Bilardo CM, van Maarle M, Chitty LS (2007) Diagnosis of Apert syndrome in the second-trimester using 2D and 3D ultrasound. Prenat Diagn 27(7):629–632. CrossRefPubMedGoogle Scholar
  7. 7.
    Werner H, Rolo LC, Araujo Júnior E, Dos Santos JR (2014) Manufacturing models of fetal malformations built from 3-dimensional ultrasound, magnetic resonance imaging, and computed tomography scan data. Ultrasound Q 30(1):69–75. CrossRefPubMedGoogle Scholar
  8. 8.
    Werner H, Lopes J, Belmonte S, Ribeiro G, Araujo Júnior E (2016) Virtual bronchoscopy through the fetal airways in a case of cervical teratoma using magnetic resonance imaging data. Congenit Anom (Kyoto) 56(1):46–47. CrossRefGoogle Scholar
  9. 9.
    Werner H, Lopes J, Tonni G, Araujo Júnior E (2016) Maternal-fetal attachment in blind women using physical model from three-dimensional ultrasound and magnetic resonance scan data: six serious cases. J Matern Fetal Neonatal Med 29(14):2229–2232. PubMedCrossRefGoogle Scholar
  10. 10.
    Delashaw JB, Persing JA, Jane JA (1991) Cranial deformation in craniosynostosis. A new explanation. Neurosurg Clin N Am 2(3):611–620PubMedCrossRefGoogle Scholar
  11. 11.
    Park WJ, Theda C, Maestri NE, Meyers GA, Fryburg JS, Dufresne C, Cohen MM Jr, Jabs EW (1995) Analysis of phenotypic features and FGFR2 mutations in Apert syndrome. Am J Hum Genet 57:321–332PubMedPubMedCentralGoogle Scholar
  12. 12.
    Slaney SF, Oldridge M, Hurst JA, Morriss-Kay GM, Hall CM, Poole MD, Wilkie AO (1996) Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Am J Hum Genet 58(5):923–932PubMedPubMedCentralGoogle Scholar
  13. 13.
    Ketwarro PD, Robson CD, Estrofe JA (2015) Prenatal imaging of craniosynostosys syndromes. Semin Ultrasound CT MRI 36(6):453–464. CrossRefGoogle Scholar
  14. 14.
    Patton MA, Goodship J, Hayward R, Lansdown R (1988) Intellectual development in Apert’s syndrome: a long term follow-up of 29 patients. J Med Genet 25(3):164–167. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Raynaud C, Di Rocco C (2007) Brain malformation in syndromic craniosynostoses, a primary disorder of white matter: a review. Childs Nerv Syst 23:1379–1388CrossRefGoogle Scholar
  16. 16.
    Tokumaru AM, Barkovich AJ, Ciricillo SF, Edwards MS (1996) Skull base and calvarial deformities: association with intracranial changes in craniofacial syndromes. Am J Neuroradiol 17(4):619–630PubMedGoogle Scholar
  17. 17.
    Stark Z, McGillivray G, Sampson A, Palma-Dias R, Edwards A, Said JM, Whiteley G, Fink AM (2015) Apert syndrome: temporal lobe abnormalities on fetal brain imaging. Prenat Diagn 35(2):179–182. CrossRefPubMedGoogle Scholar
  18. 18.
    Hata T, Hanaoka U, Tenkumo C, Sato M, Tanaka H, Ishimura M (2012) Three- and four-dimensional HDlive rendering images of normal and abnormal fetuses: pictorial essay. Arch Gynecol Obstet 286(6):1431–1435. CrossRefPubMedGoogle Scholar
  19. 19.
    Nout E, Bannink N, Koudstaal MJ, Veenland JF, Joosten KF, Poublon RM, van der Wal KG, Mathijssen IM, Wolvius EB (2012) Upper airway changes in syndromic craniosynostosis patients following midface or monobloc advancement: correlation between volume changes and respiratory outcome. J Craniomaxillofac Surg 40(3):209–214. CrossRefPubMedGoogle Scholar
  20. 20.
    Bender CA, Veneman W, Veenland JF, Mathijssen IM, Hop WC, Koudstaal MJ, Wolvius EB (2013) Orbital aspects following monobloc advancement in syndromic craniosynostosis. J Craniomaxillofac Surg 41(7):e146–e153. CrossRefPubMedGoogle Scholar
  21. 21.
    Werner H, Castro P, Daltro P, Lopes dos Santos J, Ribeiro G, Tonni G, Campbell S, Araujo Júnior E (2017) Monochorionic diamniotic quadruplet pregnancy: physical models from prenatal three-dimensional ultrasound and magnetic resonance imaging data. Ultrasound Obstet Gynecol 49(6):812–814. CrossRefPubMedGoogle Scholar
  22. 22.
    Wang YZ, Tsai HD, Hsieh CT (2017) Prenatal diagnosis of a sporadic Apert syndrome by 3-D ultrasound and 3-D helical computerized tomography. Taiwan J Obstet Gynecol 56(4):571–572. CrossRefPubMedGoogle Scholar
  23. 23.
    Chen CP, Su YN, Hsu CY, Ling PY, Tsai FJ, Chern SR, Wu PC, Chen HE, Wang W (2010) Second-trimester molecular prenatal diagnosis of sporadic Apert syndrome following sonographic findings of mild ventriculomegaly and clenched hands mimicking trisomy 18. Taiwan J Obstet Gynecol 49(1):129–312. CrossRefPubMedGoogle Scholar
  24. 24.
    Weber B, Schwabegger AH, Vodopiutz J, Janecke AR, Forstner R, Steiner H (2010) Prenatal diagnosis of apert syndrome with cloverleaf skull deformity using ultrasound, fetal magnetic resonance imaging and genetic analysis. Fetal Diagn Ther 27(1):51–56. CrossRefPubMedGoogle Scholar
  25. 25.
    Lam H, Lo TK, Lau E, Chin R, Tang L (2006) The use of 2- and 3-dimensional sonographic scans in the evaluation of cranial sutures: prenatal diagnosis of Apert syndrome. J Ultrasound Med 25(11):1481–1484. CrossRefPubMedGoogle Scholar
  26. 26.
    Athanasiadis AP, Zafrakas M, Polychronou P, Florentin-Arar L, Papasozomenou P, Norbury G, Bontis JN (2008) Apert syndrome: the current role of prenatal ultrasound and genetic analysis in diagnosis and counselling. Fetal Diagn Ther 24(4):495–498. CrossRefPubMedGoogle Scholar
  27. 27.
    Esser T, Rogalla P, Bamberg C, Kalache KD (2005) Application of the three-dimensional maximum mode in prenatal diagnosis of Apert syndrome. Am J Obstet Gynecol 193(5):1743–1745. CrossRefPubMedGoogle Scholar
  28. 28.
    Hansen WF, Rijhsinghani A, Grant S, Yankowitz J (2004) Prenatal diagnosis of Apert syndrome. Fetal Diagn Ther 19(2):127–130. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RadiologyClínica de Diagnóstico por Imagem (CDPI)Rio de JaneiroBrazil
  2. 2.Department of Arts and DesignPontifícia Universidade Católica (PUC Rio)Rio de JaneiroBrazil
  3. 3.Department of Obstetrics, Paulista School of MedicineFederal University of São Paulo (EPM-UNIFESP)São PauloBrazil

Personalised recommendations