Advertisement

Child's Nervous System

, Volume 33, Issue 12, pp 2095–2098 | Cite as

Intramedullary placement of ventricular shunts: a review of using bone as a distal cerebrospinal absorption site in treating hydrocephalus

  • Mohammad W. Kassem
  • Joshua Chern
  • Marios Loukas
  • R. Shane Tubbs
Review Paper

Abstract

Purpose

Intraosseous (IO) vascular access has been used since the Second World War and is warranted when there is an emergency and/or urgent need to replenish the vascular pool. Despite long-term and satisfactory results from delivering large quantities of intravenous fluid via the medullary space of bone, use of this space for a distant receptacle for cerebrospinal fluid (CSF) diversion has seldom been considered.

Methods

The current paper reviews the literature regarding the bony medullary space as a receptacle for intravenous fluid and CSF.

Results

Previous authors have demonstrated the potential of the diploic space of the calvaria for CSF shunting. Pugh and colleagues tested the ability of the cranium to receive and absorb a small amount of tracer fluid.

Conclusion

The literature suggests that intraosseous placement of ventricular diversionary shunts is an alternative to more traditional sites such as the pleural cavity and peritoneum. When these latter locations are not available or are contraindicated, placement in the medullary space of bone is another option available to the surgeon.

Keywords

Ventricular shunts Diploic Shunts Ventriculocalvarial Ventriculodiploic Hydrocephalus Spina bifida Ventriculoilial Ventriculosternal 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors have no financial conflicts of interest.

References

  1. 1.
    Anson J (2014) Vascular access in resuscitation. Surv Anesthesiol 58(6):319.  https://doi.org/10.1097/01.sa.0000455295.73918.19 CrossRefGoogle Scholar
  2. 2.
    Canale D, Longo L, Cushing H (1990) Harvey Cushing and pediatric neurosurgery. Neurosurgery 602.  https://doi.org/10.1097/00006123-199010000-00017
  3. 3.
    Dubick M, Holcomb J (2000) A review of intraosseous vascular access: current status and military application. Mil Med 165(7):552–559 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10920658 PubMedGoogle Scholar
  4. 4.
    García-González U, Cavalcanti D, Agrawal A, Gonzalez L, Wallace R, Spetzler R, Preul M (2009) The diploic venous system: surgical anatomy and neurosurgical implications. Neurosurg Focus 27(5):E2.  https://doi.org/10.3171/2009.8.focus09169 CrossRefPubMedGoogle Scholar
  5. 5.
    Goldstein H, Feldstein N, Anderson R (2015) Letter to the editor: Ventriculoiliac shunt: a single case experience. J Neurosurg Pediatr 16(4):477–478.  https://doi.org/10.3171/2015.4.peds15192 CrossRefPubMedGoogle Scholar
  6. 6.
    Lake C (1959) The ventriculomastoid shunt. Laryngoscope 69(12):1469–1477.  https://doi.org/10.1288/00005537-195912000-00001 CrossRefPubMedGoogle Scholar
  7. 7.
    Leidel B, Kirchhoff C, Bogner V, Stegmaier J, Mutschler W, Kanz K, Braunstein V (2009) Is the intraosseous access route fast and efficacious compared to conventional central venous catheterization in adult patients under resuscitation in the emergency department? A prospective observational pilot study. Patient Safe Surg 3(1):24.  https://doi.org/10.1186/1754-9493-3-24 CrossRefGoogle Scholar
  8. 8.
    Leidel B, Kirchhoff C, Braunstein V, Bogner V, Biberthaler P, Kanz K (2010) Comparison of two intraosseous access devices in adult patients under resuscitation in the emergency department: a prospective, randomized study. Resuscitation 81(8):994–999.  https://doi.org/10.1016/j.resuscitation.2010.03.038 CrossRefPubMedGoogle Scholar
  9. 9.
    Mccarthy G (2000) Does intraosseous have to mean intramedullary. Emergency Medicine Journal 17(6):432-a-432.  https://doi.org/10.1136/emj.17.6.432-a CrossRefGoogle Scholar
  10. 10.
    McCarthy G, O'Donnell C, O'Brien M (2003) Successful intraosseous infusion in the critically ill patient does not require a medullary cavity. Resuscitation 56(2):183–186.  https://doi.org/10.1016/s0300-9572(02)00348-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Nosik W (1950) Ventriculomastoidostomy. J Neurosurg 7(3):236–239.  https://doi.org/10.3171/jns.1950.7.3.0236 CrossRefGoogle Scholar
  12. 12.
    Orlowski J, Julius C, Petras R, Porembka D, Gallagher J (1989) The safety of intraosseous infusions: risks of fat and bone marrow emboli to the lungs. Ann Emerg Med 18(10):1062–1067.  https://doi.org/10.1016/s0196-0644(89)80932-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Pasley J, Miller C, DuBose J, Shackelford S, Fang R, Boswell K et al (2015) Intraosseous infusion rates under high pressure. J Trauma Acute Care Surg 78(2):295–299.  https://doi.org/10.1097/ta.0000000000000516 CrossRefPubMedGoogle Scholar
  14. 14.
    Pugh J, Tyler J, Churchill T, Fox R, Aronyk K (2007) Intraosseous infusion into the skull: potential application for the management of hydrocephalus. J Neurosurg Pediatr 106(2):120–125.  https://doi.org/10.3171/ped.2007.106.2.120 CrossRefGoogle Scholar
  15. 15.
    Santos D, Carron P, Yersin B, Pasquier M (2013) EZ-IO® intraosseous device implementation in a pre-hospital emergency service: a prospective study and review of the literature. Resuscitation 84(4):440–445.  https://doi.org/10.1016/j.resuscitation.2012.11.006 CrossRefPubMedGoogle Scholar
  16. 16.
    Susak L, Macnab A, Christenson J, Peng J, Horwood B, Johnson D et al (2000) Early report on emergency sternal intraosseous infusion in adults. Prehospital Disaster Med 15(S2):S106.  https://doi.org/10.1017/s1049023x00032374 CrossRefGoogle Scholar
  17. 17.
    Svien H, Dodge H, Lake C (1952) Ventriculomastoid shunt in the management of obstruction to the aqueduct of sylvius in the adult: report of case. Proc Staff Meet Mayo Clin 27:215–218 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14941860 PubMedGoogle Scholar
  18. 18.
    Tubbs R, Bauer D, Chambers M, Loukas M, Shoja M, Cohen-Gadol A (2011) A novel method for cerebrospinal fluid diversion. Neurosurgery 68(2):491–495.  https://doi.org/10.1227/neu.0b013e3181ffa21c CrossRefPubMedGoogle Scholar
  19. 19.
    Tubbs R, Tubbs I, Loukas M, Cohen-Gadol A (2015) Ventriculoiliac shunt: a cadaveric feasibility study. J Neurosurg Pediatr 15(3):310–312.  https://doi.org/10.3171/2014.10.peds14252 CrossRefPubMedGoogle Scholar
  20. 20.
    Von Hoff D, Kuhn J, Burris H, Miller L (2008) Does intraosseous equal intravenous? A pharmacokinetic study. Am J Emerg Med 26(1):31–38.  https://doi.org/10.1016/j.ajem.2007.03.024 CrossRefGoogle Scholar
  21. 21.
    Wagner K (1985) Intraosseous infusion: an alternative route of pediatric intravascular access. J Emerg Med 3(6):496.  https://doi.org/10.1016/0736-4679(85)90015-0 CrossRefGoogle Scholar
  22. 22.
    Welch K (1967) The secretion of cerebrospinal fluid by lamina epithelialis. Monogr Surg Sci 4:155–192 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/4864686 PubMedGoogle Scholar
  23. 23.
    Whitenack S, Hausberger F (1971) Intravasation of fat from the bone marrow cavity. Am J Pathol 65:335–345 Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/5134888 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mohammad W. Kassem
    • 1
    • 2
  • Joshua Chern
    • 3
    • 4
  • Marios Loukas
    • 2
  • R. Shane Tubbs
    • 1
    • 2
  1. 1.Seattle Science FoundationSeattleUSA
  2. 2.Department of Anatomical SciencesSt. George’s UniversityTrue BlueGrenada
  3. 3.Pediatric Neurosurgery AssociatesChildren’s Healthcare of AtlantaAtlantaUSA
  4. 4.Department of NeurosurgeryEmory UniversityAtlantaUSA

Personalised recommendations