Child's Nervous System

, Volume 33, Issue 2, pp 337–341 | Cite as

Intra and inter-observer reliability of determining degree of pelvic obliquity in neuromuscular scoliosis using the EOS-CHAIR® protocol

  • Jihane Rouissi
  • Robin Arvieu
  • Arnaud Dubory
  • Claudio Vergari
  • Manon Bachy
  • Raphaël Vialle
Original Paper
  • 240 Downloads

Abstract

Purpose

Scoliosis with pelvic obliquity (PO) could be investigated with the EOS-CHAIR protocol as the most common deformity especially in patients with trunk hypotonia and quadriplegia. However, the intra-observer and inter-observer reliability of various angles assessing PO was not investigated with this new imaging protocol.

Methods

A retrospective cohort of 36 EOS frontal full-spine acquisitions made in sitting position was used. The sacroiliac pelvic obliquity angle, iliac crest pelvic obliquity angle, and ischiatic pelvic obliquity angle were assessed in an intra-observer and inter-observer study.

Results

The use of the EOS-CHAIR protocol was implemented satisfactory with a high acceptance rate by all caregivers and patients and their families. Intra-observer and inter-observer reliability was excellent for the three tested angular measurements.

Discussion

As for idiopathic scoliosis, we postulate the EOS system as being superior to standard radiographs to assess 3D spinal deformities in neuromuscular conditions. The EOS-CHAIR protocol improves preoperative comprehension of the lumbosacral junction anatomy in patients with poor standing or sitting postures. Our results show a very high reliability of three different angular measurements of the frontal pelvic obliquity in sitting position. Then it is possible to use one of these three angles as well as the others to assess frontal pelvic obliquity in neuromuscular patients. This frontal pelvic obliquity protocol in sitting position with the EOS-CHAIR is a validated measurement technique that needs to be used now to measure PO as a critical parameter of the global trunk balance in neuromuscular patients.

Keywords

Neuromuscular scoliosis Eos-chair Pelvic obliquity Trunk imbalance Eos system CD reformatting 

Notes

Compliance with ethical standards

Conflict of interest

Jihane Rouissi: No conflict of interest to disclose. Robin Arvieu: No conflict of interest to disclose. Arnaud Dubory: No conflict of interest to disclose. Claudio Vergari: No conflict of interest to disclose. Manon Bachy: No conflict of interest to disclose. Raphaël Vialle works as a consultant for Stryker Spine

References

  1. 1.
    Anari JB, Spiegel DA, Baldwin KD (2015) Neuromuscular scoliosis and pelvic fixation in 2015: where do we stand? World J Orthop 6:564–566. doi:10.5312/wjo.v6.i8.564 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Auerbach JD, Spiegel DA, Zgonis MH, et al. (2009) The correction of pelvic obliquity in patients with cerebral palsy and neuromuscular scoliosis: is there a benefit of anterior release prior to posterior spinal arthrodesis? Spine Phila Pa 1976 34:E766–74. doi:10.1097/BRS.0b013e3181b4d558
  3. 3.
    Vialle R, Thevenin-Lemoine C, Mary P (2013) Neuromuscular scoliosis. Orthop Traumatol Surg Res 99:S124–S139. doi:10.1016/j.otsr.2012.11.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Brooks JT, Sponseller PD (2015) What’s new in the management of neuromuscular scoliosis. J Pediatr Orthop. doi:10.1097/BPO.0000000000000497
  5. 5.
    Bouloussa H, Dubory A, Seiler C et al (2015) A radiolucent chair for sitting-posture radiographs in non-ambulatory children: use in biplanar digital slot-scanning. Pediatr Radiol 45:1864–1869. doi:10.1007/s00247-015-3374-0 CrossRefPubMedGoogle Scholar
  6. 6.
    Bouyer B, Bachy M, Zahi R et al (2014) Correction of pelvic obliquity in neuromuscular spinal deformities using the “T construct”: results and complications in a prospective series of 60 patients. Eur Spine J 23:163–171. doi:10.1007/s00586-013-2847-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Vialle R, Delecourt C, Morin C (2006) Surgical treatment of scoliosis with pelvic obliquity in cerebral palsy: the influence of intraoperative traction. Spine Phila Pa 1976 31:1461–6. doi:10.1097/01.brs.0000219874.46680.87
  8. 8.
    Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRefPubMedGoogle Scholar
  9. 9.
    Bland JM, Altman DG (1990) A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput Biol Med 20:337–340CrossRefPubMedGoogle Scholar
  10. 10.
    Roberts SB, Tsirikos AI (2016) Factors influencing the evaluation and management of neuromuscular scoliosis: a review of the literature. J Back Musculoskelet Rehabil. doi:10.3233/BMR-160675
  11. 11.
    Melhem E, Assi A, El Rachkidi R, Ghanem I (2016) EOS(®) biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop 10:1–14. doi:10.1007/s11832-016-0713-0 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Courvoisier A, Garin C, Vialle R, Kohler R (2015) The change on vertebral axial rotation after posterior instrumentation of idiopathic scoliosis. Childs Nerv Syst ChNS off J Int Soc. Pediatr Neurosurg 31:2325–2331. doi:10.1007/s00381-015-2891-3 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jihane Rouissi
    • 1
  • Robin Arvieu
    • 1
  • Arnaud Dubory
    • 1
    • 2
  • Claudio Vergari
    • 3
    • 4
  • Manon Bachy
    • 1
    • 2
  • Raphaël Vialle
    • 1
    • 2
  1. 1.Department of Pediatric Orthopaedics, Armand Trousseau HospitalUniversité Pierre et Marie Curie ParisParisFrance
  2. 2.Department for Innovative Therapies in Musculoskeletal Diseases - Armand Trousseau HospitalThe MAMUTH Hospital-UniversityParisFrance
  3. 3.Arts et Métiers, ParistechInstitut de Biomécanique Humaine Georges CharpakParisFrance
  4. 4.School of PhysicsUniversity of ExeterExeterUK

Personalised recommendations