Child's Nervous System

, Volume 32, Issue 2, pp 345–349 | Cite as

Neurosurgical training with simulators: a novel neuroendoscopy model

  • Sebastián G. Jaimovich
  • Marcela Bailez
  • Marcelo Asprea
  • Roberto Jaimovich
Original Paper



The aim of this study is to present a novel neuroendoscopy simulation model in live animals, with the objective of enhancing patient safety with realistic surgical training.


A simulation model using live Wistar rats was designed after the approval of the Institutional Committee for the Care and Use of Laboratory Animals. Under anesthesia, a hydroperitoneum was created in order to simulate a cavity with mesenteric membranes and vessels, viscera, and a solid and bleeding tumor (the liver) floating in a liquid environment. For validation purposes, we evaluated trainees’ basal and final skills for each neuroendoscopic procedure, and we also acknowledged trainees’ and instructors’ opinion on the model’s realism.


This model is simple and low cost effective for complete and real-life training in neuroendoscopy, with the possibility of performing all the basic and advanced endoscopic procedures, such as endoscopic exploration, membrane fenestration, vessel coagulation, hematoma evacuation, and endoscopic tumor biopsy and resection using a ventricular neuroendoscopy set. Although the model does not represent human ventricular anatomy, a reliable simulation is possible in real living tissue in a liquid environment. Trainees’ skills improvements were notorious.


Minimally invasive endoscopic techniques require specific training. Simulation training can improve and accelerate the learning curve. The presented training model allows simulating the different neuroendoscopic procedures. We believe that due to its practical possibilities, its simplicity, low cost, reproducibility, and reality, being live animal tissue, it can be considered a fundamental model within a complete training program on neuroendoscopy.


Neuroendoscopy Surgical training Simulation Live animal model Neurosurgical education 


  1. 1.
    Barassi N, Benavides F, Ceccarelli A (1996). Ética en el uso de animales de experimentación. Medicina 56 (5) [spanish]Google Scholar
  2. 2.
    Coelho G, Kondageski C, Vaz-Guimarães Filho F, Ramina R, Hunhevicz SC, Daga F, Lyra MR, CavalheiroS ZST (2011) Frameless image-guided neuroendoscopy training in real simulators. Minim Invas Neurosurg 54:115–118CrossRefGoogle Scholar
  3. 3.
    Davis LE (1936) Neurological surgery. Lea & Febiger, PhiladelphiaGoogle Scholar
  4. 4.
    Declaración de la Asamblea Médica Mundial sobre el Uso de Animales en la Investigación Biomédica. Adoptada por la 41a Asamblea Médica Mundial Hong Kong, Septiembre 1989 y revisada por la 57a Asamblea General de la AMM, Pilanesberg, Sudáfrica, Octubre 2006Google Scholar
  5. 5.
    Delorme S, Laroche D, Di Raddo R, Del Maestro RF (2012) NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71:32–42PubMedGoogle Scholar
  6. 6.
    Grant FC, Fay T (1923) Ventriculoscopy and intraventricular photography in internal hydrocephalus. Jama 80:461–463CrossRefGoogle Scholar
  7. 7.
    Grant JA (1996) Victor Darwin Lespinasse: a biographical sketch. Neurosurgery 39:1232–1233CrossRefPubMedGoogle Scholar
  8. 8.
    Haji FA, Dubrowski A, Drake J, Ribaupierre S (2013) Needs assessment for simulation training in neuroendoscopy: a Canadian national survey. J Neurosurg 118:250–257CrossRefPubMedGoogle Scholar
  9. 9.
    Jongh Cobo E, Pereira Borges FR, Pereira Riverón R (2005) Modelo simulador para entrenamiento en neuroendoscopia y neuroanatomía. Rev Cubana Cir 44(1) [spanish]Google Scholar
  10. 10.
    Krisht AF, Yoo K, Arnautovic KI, Al-Mefty O (2005) Cavernous sinus tumor model in the canine: a simulation model for cavernous sinus tumor surgery. Neurosurgery 56:1361–1366CrossRefPubMedGoogle Scholar
  11. 11.
    Mixter WJ (1923) Ventriculoscopy and puncture of the floor of the third ventricle. Boston Med Surg J 188:277–278CrossRefGoogle Scholar
  12. 12.
    Neubauer A, Wolfsberger S (2013) Virtual endoscopy in neurosurgery: a review. Neurosurgery 72:97–106CrossRefPubMedGoogle Scholar
  13. 13.
    Olabe J, Olabe J, Sancho V (2009) Human cadaver brain infusion model for neurosurgical training. Surg Neurol 72:700–702CrossRefPubMedGoogle Scholar
  14. 14.
    Satava RM (2010) Emerging trends that herald the future of surgical simulation. Surg Clin N Am 90(3):623–633CrossRefPubMedGoogle Scholar
  15. 15.
    Schirmer CM, Mocco J, Bradley EJ (2013) Evolving virtual reality simulation in neurosurgery. Neurosurgery 73:127–137CrossRefPubMedGoogle Scholar
  16. 16.
    Selden NR, Origitano TC, Hadjipanayis C, Byrne R (2013) Model-based simulation for early neurosurgical learners. Neurosurgery 73:15–24CrossRefPubMedGoogle Scholar
  17. 17.
    Vaz-Guimarães Filho F, Coelho G, Cavalheiro S, Lyra MR, Zymberg ST (2011) Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus 30(4):1–6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sebastián G. Jaimovich
    • 1
    • 2
  • Marcela Bailez
    • 3
  • Marcelo Asprea
    • 4
  • Roberto Jaimovich
    • 2
    • 5
  1. 1.Department of Pediatric NeurosurgeryHospital de Pediatría S.A.M.I.C. “Prof. Dr. Juan P. Garrahan”Buenos AiresArgentina
  2. 2.Department of Pediatric NeurosurgeryFLENI Neurological Research Institute Dr. Raúl CarreaBuenos AiresArgentina
  3. 3.Head of Department of SurgeryHospital de Pediatría S.A.M.I.C. “Prof. Dr. Juan P. Garrahan”Buenos AiresArgentina
  4. 4.Bioterium and Experimental SurgeryHospital de Pediatría S.A.M.I.C. “Prof. Dr. Juan P. Garrahan”Buenos AiresArgentina
  5. 5.Head of Department of Pediatric NeurosurgeryHospital de Pediatría S.A.M.I.C. “Prof. Dr. Juan P. Garrahan”Buenos AiresArgentina

Personalised recommendations