Child's Nervous System

, Volume 32, Issue 1, pp 43–54 | Cite as

The role of simulation in neurosurgery

  • Roberta Rehder
  • Muhammad Abd-El-Barr
  • Kristopher Hooten
  • Peter Weinstock
  • Joseph R. Madsen
  • Alan R. Cohen
Review Paper

Abstract

Purpose

In an era of residency duty-hour restrictions, there has been a recent effort to implement simulation-based training methods in neurosurgery teaching institutions. Several surgical simulators have been developed, ranging from physical models to sophisticated virtual reality systems. To date, there is a paucity of information describing the clinical benefits of existing simulators and the assessment strategies to help implement them into neurosurgical curricula. Here, we present a systematic review of the current models of simulation and discuss the state-of-the-art and future directions for simulation in neurosurgery.

Methods

Retrospective literature review.

Results

Multiple simulators have been developed for neurosurgical training, including those for minimally invasive procedures, vascular, skull base, pediatric, tumor resection, functional neurosurgery, and spine surgery. The pros and cons of existing systems are reviewed.

Conclusion

Advances in imaging and computer technology have led to the development of different simulation models to complement traditional surgical training. Sophisticated virtual reality (VR) simulators with haptic feedback and impressive imaging technology have provided novel options for training in neurosurgery. Breakthrough training simulation using 3D printing technology holds promise for future simulation practice, proving high-fidelity patient-specific models to complement residency surgical learning.

Keywords

Simulation Virtual reality 3D printing Residency Duty hours Neurosurgery 

References

  1. 1.
    Smith R (2009) The long history of gaming in military training. Simul Games 41:6–19CrossRefGoogle Scholar
  2. 2.
    Murray HJR (2012) A history of chess: the original, 1913th edn. Skyhorse Pub, New YorkGoogle Scholar
  3. 3.
    Pritchard DB (1994) The encyclopedia of chess variants. Games & Puzzles, GodalmingGoogle Scholar
  4. 4.
    Kurke L (1999) Ancient Greek board games and how to play them. Class Philol 94:21CrossRefGoogle Scholar
  5. 5.
    Crogan P (2011) Gameplay mode: war, simulation, and technoculture. University of Minnesota Press, MinneapolisCrossRefGoogle Scholar
  6. 6.
    Kunkler K (2006) The role of medical simulation: an overview. Int J Med Rob Comput Assisted Surg 2:203–210CrossRefGoogle Scholar
  7. 7.
    Persaud TVN (1997) A history of anatomy: the post-Vesalian era. Charles C Thomas Publisher, SpringfieldGoogle Scholar
  8. 8.
    Bradley P (2006) The history of simulation in medical education and possible future directions. Med Educ 40:254–262PubMedCrossRefGoogle Scholar
  9. 9.
    Ghasemzadeh N, Zafari AM (2011) A brief journey into the history of the arterial pulse. Cardiology Research and PracticeGoogle Scholar
  10. 10.
    Limbrick DD Jr, Dacey RG Jr (2013) Simulation in neurosurgery: possibilities and practicalities: foreword. Neurosurgery 73(Suppl 1):1–3PubMedCrossRefGoogle Scholar
  11. 11.
    Fahey DG (2010) The self-inflating resuscitator—evolution of an idea. Anaesth Intensive Care 38:7Google Scholar
  12. 12.
    Singh H, Kalani M, Acosta-Torres S, El Ahmadieh TY, Loya J, Ganju A (2013) History of simulation in medicine: from Resusci Annie to the Ann Myers Medical Center. Neurosurgery 73(Suppl 1):9–14PubMedCrossRefGoogle Scholar
  13. 13.
    Denson JSA S (1969) A computer-controlled patient simulator. JAMA 208:5Google Scholar
  14. 14.
    Aggarwal R, Mytton OT, Derbrew M, Hananel D, Heydenburg M, Issenberg B, MacAulay C, Mancini ME, Morimoto T, Soper N, Ziv A, Reznick R (2010) Training and simulation for patient safety. Qual Saf Health Care 19(Suppl 2):i34–43PubMedCrossRefGoogle Scholar
  15. 15.
    Moonesinghe SR, Lowery J, Shahi N, Millen A, Beard JD (2011) Impact of reduction in working hours for doctors in training on postgraduate medical education and patients' outcomes: systematic review. BMJ 342:d1580PubMedCrossRefGoogle Scholar
  16. 16.
    Beall DP (1999) The ACGME Institutional Requirements: what residents need to know. (Accreditation Council for Graduate Medical Education)(Resident Physician Forum). JAMA 281:2352CrossRefGoogle Scholar
  17. 17.
    Ganju A, Aoun SG, Daou MR, El Ahmadieh TY, Chang A, Wang L, Batjer HH, Bendok BR (2013) The role of simulation in neurosurgical education: a survey of 99 United States neurosurgery program directors. World Neurosurg 80:e1–e8PubMedCrossRefGoogle Scholar
  18. 18.
    Durkin ET, McDonald R, Munoz A, Mahvi D (2008) The impact of work hour restrictions on surgical resident education. J Surg Educ 65:54–60PubMedCrossRefGoogle Scholar
  19. 19.
    Bohm PE, Arnold PM (2015) Simulation and resident education in spinal neurosurgery. Surg Neurol Int 6:33PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, Lampotang S, Lizdas DE, Lombard G, Lister JR (2013) Mixed-reality simulation for neurosurgical procedures. Neurosurgery 73(Suppl 1):138–145PubMedCrossRefGoogle Scholar
  21. 21.
    Chan S, Conti F, Salisbury K, Blevins NH (2013) Virtual reality simulation in neurosurgery: technologies and evolution. Neurosurgery 72(Suppl 1):154–164PubMedCrossRefGoogle Scholar
  22. 22.
    Cohen AR, Lohani S, Manjila S, Natsupakpong S, Brown N, Cavusoglu MC (2013) Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training. Childs Nerv Syst 29:1235–1244PubMedCrossRefGoogle Scholar
  23. 23.
    Benet A, Rincon-Torroella J, Lawton MT, Gonzalez Sanchez JJ (2014) Novel embalming solution for neurosurgical simulation in cadavers. J Neurosurg 120:1229–1237PubMedCrossRefGoogle Scholar
  24. 24.
    Alaraj A, Lemole MG, Finkle JH, Yudkowsky R, Wallace A, Luciano C, Banerjee PP, Rizzi SH, Charbel FT (2011) Virtual reality training in neurosurgery: Review of current status and future applications. Surg Neurol Int 2:52PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Mattei TA, Frank C, Bailey J, Lesle E, Macuk A, Lesniak M, Patel A, Morris MJ, Nair K, Lin JJ (2013) Design of a synthetic simulator for pediatric lumbar spine pathologies. J Neurosurg Pediatr 12:192–201PubMedCrossRefGoogle Scholar
  26. 26.
    Zhu B, Gu L (2012) A hybrid deformable model for real-time surgical simulation. Comput Med Imaging Graph 36:356–365PubMedCrossRefGoogle Scholar
  27. 27.
    Shaoping Xu SX, Liu XP, Hua Zhang HZ, Linyan Hu LH (2010) An improved realistic mass-spring model for surgery simulation. pp 1–6Google Scholar
  28. 28.
    Kneebone R (2003) Simulation in surgical training: educational issues and practical implications. Med Educ 37:267–277PubMedCrossRefGoogle Scholar
  29. 29.
    Jabbour P, Chalouhi N (2013) Simulation-based neurosurgical training for the presigmoid approach with a physical model. Neurosurgery 73(Suppl 1):81–84PubMedCrossRefGoogle Scholar
  30. 30.
    Halic T, Kockara S, Bayrak C, Rowe R (2010) Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery. BMC Bioinformatics 11(Suppl 6):S11PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bedard MP M, Weaver B, Riendeau J, Dahlquist M (2010) Assessment of driving performance using a simulator protocol: validity and reproducibility. Am J Occup Ther 64:5CrossRefGoogle Scholar
  32. 32.
    Perry M, Banks P, Richards R, Friedman EP, Shaw P (1998) The use of computer-generated three-dimensional models in orbital reconstruction. Br J Oral Maxillofac Surg 36:275–284PubMedCrossRefGoogle Scholar
  33. 33.
    Banks EH, Chudnoff S, Karmin I, Wang C, Pardanani S (2007) Does a surgical simulator improve resident operative performance of laparoscopic tubal ligation? Am J Obstet Gynecol 197(541):e541–545Google Scholar
  34. 34.
    Jabir MM, Doglioni N, Fadhil T, Zanardo V, Trevisanuto D (2009) Knowledge and practical performance gained by Iraqi residents after participation to a neonatal resuscitation program course. Acta Paediatr 98:1265–1268PubMedCrossRefGoogle Scholar
  35. 35.
    Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N (2014) The use of simulation in neurosurgical education and training. J Neurosurg 121:228–246PubMedCrossRefGoogle Scholar
  36. 36.
    Ramos P, Montez J, Tripp A, Ng CK, Gill IS, Hung AJ (2014) Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int 113:836–842PubMedCrossRefGoogle Scholar
  37. 37.
    Malone HR, Syed ON, Downes MS, D'Ambrosio AL, Quest DO, Kaiser MG (2010) Simulation in neurosurgery: a review of computer-based simulation environments and their surgical applications. Neurosurgery 67:1105–1116PubMedCrossRefGoogle Scholar
  38. 38.
    Arora A, Khemani S, Tolley N, Singh A, Budge J, Varela DA, Francis HW, Darzi A, Bhatti NI (2012) Face and content validation of a virtual reality temporal bone simulator. Otolaryngol Head Neck Surg 146:497–503PubMedCrossRefGoogle Scholar
  39. 39.
    Levy R (2013) Psychometric and evidentiary advances, opportunities, and challenges for simulation-based assessment. Educ Assess 18:182–207CrossRefGoogle Scholar
  40. 40.
    Sharpe R, Koval V, Ronco J, Dodek P, Wong H, Shepherd J, Fitzgerald J, Ayas NT (2010) The impact of prolonged continuous wakefulness on resident clinical performance in the intensive care unit: a patient simulator study. Crit Care Med 38:766–770PubMedCrossRefGoogle Scholar
  41. 41.
    Musacchio M, Smith AP, McNeal C, Munoz L, Rothenberg DM, Von Roenn K, Byrne RW (2010) Neuro-critical care skills training using a human patient simulator. Neurocrit Care 13:169–175PubMedCrossRefGoogle Scholar
  42. 42.
    Gasco J, Patel A, Ortega-Barnett J, Branch D, Desai S, Kuo YF, Luciano C, Rizzi S, Kania P, Matuyauskas M, Banerjee P, Roitberg BZ (2014) Virtual reality spine surgery simulation: an empirical study of its usefulness. Neurol Res 36:968–973PubMedCrossRefGoogle Scholar
  43. 43.
    Acosta E, Liu A, Armonda R, Fiorill M, Haluck R, Lake C, Muniz G, Bowyer M (2007) Burrhole simulation for an intracranial hematoma simulator. Stud Health Technol Inform 125:1PubMedGoogle Scholar
  44. 44.
    Lobel D, Elder J, Schirmer CM, Bowyer M, Rezai A (2013) A novel craniotomy simulator provides a validated method to enhance education in the management of traumatic brain injury. Neurosurgery 73:57–65PubMedGoogle Scholar
  45. 45.
    Banerjee PP, Luciano CJ, Lemole GM, Charbel FT, Oh MY (2007) Accuracy of ventriculostomy catheter placement using a head- and hand-tracked high-resolution virtual reality simulator with haptic feedback. J Neurosurg 107:515–521PubMedCrossRefGoogle Scholar
  46. 46.
    Hooten GK, Lister RJ, Lombard EG, Lizdas AD, Lampotang JAS, Rajon JAD, Bova JAF, Murad JAG (2014) Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Neurosurgery 10(Suppl 4):576–581PubMedCrossRefGoogle Scholar
  47. 47.
    Lemole GM, Banerjee PP, Luciano C, Neckrysh S, Charbel FT (2007) Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery 61:142PubMedCrossRefGoogle Scholar
  48. 48.
    Panchaphongsaphak B, Stutzer D, Schwyter E, Bernays R-L, Riener R (2006) Haptic device for a ventricular shunt insertion simulator. Stud Health Technol Inform 119:428PubMedGoogle Scholar
  49. 49.
    Nussbaum ES (2011) Cerebral revascularization microsurgical and endovascular techniques, New YorkGoogle Scholar
  50. 50.
    Fargen KM, Arthur AS, Bendok BR, Levy EI, Ringer A, Siddiqui AH, Veznedaroglu E, Mocco J (2013) Experience with a simulator-based angiography course for neurosurgical residents: beyond a pilot program. Neurosurgery 73(Suppl 1):46–50PubMedCrossRefGoogle Scholar
  51. 51.
    Alvernia JE, Pradilla G, Mertens P, Lanzino G, Tamargo RJ (2010) Latex injection of cadaver heads: technical note. Neurosurgery 67:362PubMedGoogle Scholar
  52. 52.
    Olabe J, Olabe J, Roda J, Sancho V (2011) Human cadaver brain infusion skull model for neurosurgical training. Surg Neurol Int 2:54–54PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Sanan A, Abdel Aziz KM, Janjua RM, van Loveren HR, Keller JT (1999) Colored silicone injection for use in neurosurgical dissections: anatomic technical note. Neurosurgery 45:1267PubMedCrossRefGoogle Scholar
  54. 54.
    Aboud E, Al-Mefty O, Yasargil MG (2002) New laboratory model for neurosurgical training that simulates live surgery. J Neurosurg 97:1367–1372PubMedCrossRefGoogle Scholar
  55. 55.
    Oliveira Magaldi VM, Nicolato AA, Godinho OJ, Santos KM, Prosdocimi CA, Malheiros FJ, Lei FT, Belykh FE, Almefty FR, Almefty FK, Preul FM, Spetzler FR, Nakaji FP (2014) Human placenta aneurysm model for training neurosurgeons in vascular microsurgery. Neurosurgery 10(Suppl 4):592–601PubMedCrossRefGoogle Scholar
  56. 56.
    Kwok JCK, Huang W, Leung WC, Chan SK, Chan KY, Leung KM, Chu ACH, Lam AKN (2014) Human placenta as an ex vivo vascular model for neurointerventional research. J Neurointerv Surg 6:394–399PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Higurashi M, Qian Y, Zecca M, Park Y-K, Umezu M, Morgan MK (2013) Surgical training technology for cerebrovascular anastomosis. J Clin Neurosci 21:554–558PubMedCrossRefGoogle Scholar
  58. 58.
    Inoue T, Tsutsumi K, Adachi S, Tanaka S, Saito K, Kunii N (2006) Effectiveness of suturing training with 10–0 nylon under fixed and maximum magnification (×20) using desk type microscope. Surg Neurol 66:183–187PubMedCrossRefGoogle Scholar
  59. 59.
    Mashiko T, Otani K, Kawano R, Konno T, Kaneko N, Ito Y, Watanabe E (2015) Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg 83:351–361PubMedCrossRefGoogle Scholar
  60. 60.
    Wurm G, Lehner M, Tomancok B, Kleiser R, Nussbaumer K (2011) Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov 18:294–306PubMedCrossRefGoogle Scholar
  61. 61.
    Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S, Sora S, Ochiai C (2009) Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 65:719–725, discussion 725–716 PubMedCrossRefGoogle Scholar
  62. 62.
    Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J (2004) Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100:139–145PubMedCrossRefGoogle Scholar
  63. 63.
    Bech B, Lonn L, Falkenberg M, Bartholdy NJ, Rader SB, Schroeder TV, Ringsted C (2011) Construct validity and reliability of structured assessment of endoVascular expertise in a simulated setting. Eur J Vasc Endovasc Surg 42:539–548PubMedCrossRefGoogle Scholar
  64. 64.
    Dayal R, Faries PL, Lin SC, Bernheim J, Hollenbeck S, DeRubertis B, Trocciola S, Rhee J, McKinsey J, Morrissey NJ, Kent KC (2004) Computer simulation as a component of catheter-based training. J Vasc Surg 40:1112–1117PubMedCrossRefGoogle Scholar
  65. 65.
    Tedesco MM, Pak JJ, Harris EJ Jr, Krummel TM, Dalman RL, Lee JT (2008) Simulation-based endovascular skills assessment: the future of credentialing? J Vasc Surg 47:1008–1001, discussion 1014 PubMedCrossRefGoogle Scholar
  66. 66.
    Chaer RA, Derubertis BG, Lin SC, Bush HL, Karwowski JK, Birk D, Morrissey NJ, Faries PL, McKinsey JF, Kent KC (2006) Simulation improves resident performance in catheter-based intervention: results of a randomized, controlled study. Ann Surg 244:343–352PubMedCentralPubMedGoogle Scholar
  67. 67.
    Spiotta AM, Kellogg RT, Vargas J, Chaudry MI, Turk AS, Turner RD (2014) Diagnostic angiography skill acquisition with a secondary curve catheter: phase 2 of a curriculum-based endovascular simulation program. J Neurointerv Surg 7:777–80PubMedCrossRefGoogle Scholar
  68. 68.
    Stadie AT, Kockro RA, Reisch R, Tropine A, Boor S, Stoeter P, Perneczky A (2008) Virtual reality system for planning minimally invasive neurosurgery. J Neurosurg 108:382–394PubMedCrossRefGoogle Scholar
  69. 69.
    Gerzeny M, Cohen AR (1998) Advances in Endoscopic Neurosurgery. AORN J 67:957-61–963-5CrossRefGoogle Scholar
  70. 70.
    Kin T, Shin M, Oyama H, Kamada K, Kunimatsu A, Momose T, Saito N (2011) Impact of multiorgan fusion imaging and interactive 3-dimensional visualization for intraventricular neuroendoscopic surgery. Neurosurgery 69:ons40–48, discussion ons48 PubMedGoogle Scholar
  71. 71.
    Radetzky A, Rudolph M (2001) Simulating tumour removal in neurosurgery. Int J Med Inform 64:461–472PubMedCrossRefGoogle Scholar
  72. 72.
    Radetzky AR M, Starkie S, Davies B, Auer LM (2000) ROBO-SIM: a simulator for minimally invasive neurosurgery using an active manipulator. Stud Health Technol Inform 77:5Google Scholar
  73. 73.
    Freudenstein D, Bartz D, Skalej M, Duffner F (2001) New virtual system for planning of neuroendoscopic interventions. Comput Aided Surg 6:77PubMedCrossRefGoogle Scholar
  74. 74.
    Tang W, Wan TR (2014) Constraint-based soft tissue simulation for virtual surgical training. IEEE Trans Biomed Eng 61:2698–706PubMedCrossRefGoogle Scholar
  75. 75.
    Freudenstein D, Wagner A, Gurvit O, Bartz D, Duffner F (2002) Simultaneous virtual representation of both vascular and neural tissue within the subarachnoid space of the basal cistern—technical note. Med Sci Monit 8:MT153–158PubMedGoogle Scholar
  76. 76.
    Delorme S, Laroche D, DiRaddo R, Del Maestro RF (2012) NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71:32–42PubMedGoogle Scholar
  77. 77.
    Kockro RA, Serra L, Tseng-Tsai Y, Chan C, Yih-Yian S, Gim-Guan C, Lee E, Hoe LY, Hern N, Nowinski WL (2000) Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46:118–137PubMedCrossRefGoogle Scholar
  78. 78.
    Anil SM, Kato YM, Hayakawa MM, Yoshida KM, Nagahisha SM, Kanno TM (2007) Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma. Minim Invasive Neurosurg 50:65–70PubMedCrossRefGoogle Scholar
  79. 79.
    Ferroli P, Tringali G, Acerbi F, Aquino D, Franzini A, Broggi G (2010) Brain surgery in a stereoscopic virtual reality environment: a single institution's experience with 100 cases. Neurosurgery 67:ons79–84, discussion ons84 PubMedGoogle Scholar
  80. 80.
    Ferroli P, Tringali G, Acerbi F, Schiariti M, Broggi M, Aquino D, Broggi G (2013) Advanced 3-dimensional planning in neurosurgery. Neurosurgery 72:A54–A62CrossRefGoogle Scholar
  81. 81.
    Gelinas-Phaneuf N, Del Maestro RF (2013) Surgical expertise in neurosurgery: integrating theory into practice. Neurosurgery 73(Suppl 1):30–38PubMedCrossRefGoogle Scholar
  82. 82.
    Rodt T, Schlesinger A, Schramm A, Diensthuber M, Rittierodt M, Krauss JK (2007) 3D visualization and simulation of frontoorbital advancement in metopic synostosis. Childs Nerv Syst 23:1313PubMedCrossRefGoogle Scholar
  83. 83.
    Coelho G, Warf B, Lyra M, Zanon N (2014) Anatomical pediatric model for craniosynostosis surgical training. Childs Nerv Syst 30:2009–2014PubMedCrossRefGoogle Scholar
  84. 84.
    Combs SE, Thilmann C, Debus J, Schulz-Ertner D (2006) Long-term outcome of stereotactic radiosurgery (SRS) in patients with acoustic neuromas. Int J Radiat Oncol Biol Phys 64:1341–1347PubMedCrossRefGoogle Scholar
  85. 85.
    Ford E, Purger D, Tryggestad E, McNutt T, Christodouleas J, Rigamonti D, Shokek O, Won S, Zhou J, Lim M, Wong J, Kleinberg L (2008) A virtual frame system for stereotactic radiosurgery planning. Int J Radiat Oncol Biol Phys 72:1244–1249PubMedCrossRefGoogle Scholar
  86. 86.
    O'Malley L, Pignol JP, Beachey DJ, Keller BM, Presutti J, Sharpe M (2006) Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery. Phys Med Biol 51:2537–2548PubMedCrossRefGoogle Scholar
  87. 87.
    Benassi M, Begnozzi L, Gentile FP, Chiatti L, Carpino S (1993) Estimate of normal tissue damage in treatment planning for stereotactic radiotherapy. Strahlenther Onkol 169:612–616PubMedGoogle Scholar
  88. 88.
    Dieterich S, Cavedon C, Chuang CF, Cohen AB, Garrett JA, Lee CL, Lowenstein JR, d’Souza MF, Taylor DD, Wu X, Yu C (2011) Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys 38:2914PubMedCrossRefGoogle Scholar
  89. 89.
    Guerrero ML X, Ma LJ (2003) A technique to sharpen the beam penumbra for Gamma Knife. Phys Med Biol 48:11CrossRefGoogle Scholar
  90. 90.
    Nieder C, Grosu AL, Gaspar LE (2014) Stereotactic radiosurgery (SRS) for brain metastases: a systematic review. Radiat Oncol 9:155PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Boudou C, Balosso J, Esteve F, Elleaume H (2005) Monte Carlo dosimetry for synchrotron stereotactic radiotherapy of brain tumours. Phys Med Biol 50:4841–4851PubMedCrossRefGoogle Scholar
  92. 92.
    Xiong WH D, Lee L, Feng J, Morris K, Calugaru E, Burman C, Li J, Ma C (2007) Implementation of Monte Carlo simulations for the Gamma knife system. J Physics 74:11Google Scholar
  93. 93.
    Hanlon J, Firpo M, Chell E, Moshfeghi DM, Bolch WE (2011) Stereotactic radiosurgery for AMD: a Monte Carlo-based assessment of patient-specific tissue doses. Invest Ophthalmol Vis Sci 52:2334–2342PubMedCrossRefGoogle Scholar
  94. 94.
    Hamamoto Y, Manabe T, Nishizaki O, Takahashi T, Isshiki N, Murayama S, Nishina K, Umeda M (2004) Influence of collimator size on three-dimensional conformal radiotherapy of the cyberknife. Radiat Med 22:442–448PubMedGoogle Scholar
  95. 95.
    Bernardo A, Preul MC, Zabramski JM, Spetzler RF (2003) A three-dimensional interactive virtual dissection model to simulate transpetrous surgical avenues. Neurosurgery 52:499–505PubMedCrossRefGoogle Scholar
  96. 96.
    Oishi M, Fukuda M, Ishida G, Saito A, Hiraishi T, Fujii Y (2011) Presurgical simulation with advanced 3-dimensional multifusion volumetric imaging in patients with skull base tumors. Neurosurgery 68:188–199, discussion 199 PubMedCrossRefGoogle Scholar
  97. 97.
    Oishi M, Fukuda M, Yajima N, Yoshida K, Takahashi M, Hiraishi T, Takao T, Saito A, Fujii Y (2013) Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. J Neurosurg 119:94–105PubMedCrossRefGoogle Scholar
  98. 98.
    Kockro RA, Hwang PY (2009) Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery. Neurosurgery 64:216–229, discussion 229–230 PubMedGoogle Scholar
  99. 99.
    Nash R, Sykes R, Majithia A, Arora A, Singh A, Khemani S (2012) Objective assessment of learning curves for the Voxel-Man TempoSurg temporal bone surgery computer simulator. J Laryngol Otol 126:663–669PubMedCrossRefGoogle Scholar
  100. 100.
    Tam MD, Laycock SD, Jayne D, Babar J, Noble B (2013) 3-D printouts of the tracheobronchial tree generated from CT images as an aid to management in a case of tracheobronchial chondromalacia caused by relapsing polychondritis. J Radiol Case Rep 7:34–43PubMedCentralPubMedGoogle Scholar
  101. 101.
    Alaraj A, Charbel FT, Birk D, Tobin M, Tobin M, Luciano C, Banerjee PP, Rizzi S, Sorenson J, Foley K, Slavin K, Roitberg B (2013) Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery 72(Suppl 1):115PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Arora A, Swords C, Khemani S, Awad Z, Darzi A, Singh A, Tolley N (2014) Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation. Int J Surg 12:141–145PubMedCrossRefGoogle Scholar
  103. 103.
    Harrop J, Lobel DA, Bendok B, Sharan A, Rezai AR (2013) Developing a neurosurgical simulation-based educational curriculum: an overview. Neurosurgery 73(Suppl 1):25–29PubMedCrossRefGoogle Scholar
  104. 104.
    Chui CK, Teo J, Wang Z, Ong J, Zhan J, Si-Hoe KM, Ong SH, Teoh SH (2006) Integrative haptic and visual interaction for simulation of PMMA injection during vertebroplasty. Stud Health Technol Inform 119:96–98PubMedGoogle Scholar
  105. 105.
    Morishita T, Okun MS, Burdick A, Jacobson CE, Foote KD (2013) Cerebral venous infarction: a potentially avoidable complication of deep brain stimulation surgery. Neuromodulation 16:407–413, discussion 413 PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Nowinski WL, Chua BC, Volkau I, Puspitasari F, Marchenko Y, Runge VM, Knopp MV (2010) Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3- and 7-tesla scans. J Neurosurg 113:1234PubMedCrossRefGoogle Scholar
  107. 107.
    Rodionov R, Vollmar C, Nowell M, Miserocchi A, Wehner T, Micallef C, Zombori G, Ourselin S, Diehl B, McEvoy AW, Duncan JS (2013) Feasibility of multimodal 3D neuroimaging to guide implantation of intracranial EEG electrodes. Epilepsy Res 107:91–100PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Noordmans HJ, Van Rijen PC, Van Veelen CWM, Viergever MA, Hoekema R (2001) Localization of implanted EEG electrodes in a virtual-reality environment. Comput Aided Surg 6(5):241–258PubMedCrossRefGoogle Scholar
  109. 109.
    Pieters TA, Conner CR, Tandon N (2013) Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes. J Neurosurg 118:1086PubMedCrossRefGoogle Scholar
  110. 110.
    Dykstra AR, Chan AM, Quinn BT, Zepeda R, Keller CJ, Cormier J, Madsen JR, Eskandar EN, Cash SS (2012) Individualized localization and cortical surface-based registration of intracranial electrodes. NeuroImage 59:3563–3570PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Rider EA (2007) A practical guide to teaching and assessing the ACGME core competencies. HCPro, Marblehead, MassGoogle Scholar
  112. 112.
    Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5:335–341PubMedCrossRefGoogle Scholar
  113. 113.
    Breimer G, Bodani V, Looi T, Drake J (2015) Design and evaluation of a new synthetic brain simulator for endoscopic third ventriculostomy. J Neurosurg Pediatr 15:82–88PubMedCrossRefGoogle Scholar
  114. 114.
    Tam MD, Laycock SD, Bell D, Chojnowski A (2012) 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J Radiol Case Rep 6:31–37PubMedCentralPubMedGoogle Scholar
  115. 115.
    Gerstle T, Ibrahim A, Kim PS, Lee B, Lin SJ (2014) A plastic surgery application in evolution: three-dimensional printing. Plast Reconstr Surg 133:446–451PubMedCrossRefGoogle Scholar
  116. 116.
    Naftulin J, Kimchi E, Cash SS (2015) Streamlined, inexpensive 3D printing of the brain and skull. PLoS One 10:e0136198PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Tai BL, Rooney D, Stephenson F, Liao PS, Sagher O, Shih AJ, Savastano LE (2015) Development of a 3D-printed external ventricular drain placement simulator: technical note. J Neurosurg 26:1–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Roberta Rehder
    • 1
  • Muhammad Abd-El-Barr
    • 1
  • Kristopher Hooten
    • 2
  • Peter Weinstock
    • 3
  • Joseph R. Madsen
    • 1
  • Alan R. Cohen
    • 1
  1. 1.Department of NeurosurgeryBoston Children’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of NeurosurgeryUniversity of FloridaGainesvilleUSA
  3. 3.Department of Anesthesia, Pediatric Simulator Program DirectorBoston Children’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations