Advertisement

Child's Nervous System

, Volume 30, Issue 7, pp 1183–1189 | Cite as

The mutational spectrum of the NF1 gene in neurofibromatosis type I patients from UAE

  • Salma Ben-Salem
  • Aisha M. Al-Shamsi
  • Bassam R. Ali
  • Lihadh Al-GazaliEmail author
Original Paper

Abstract

Introduction

Germline heterozygous mutations in the tumor suppresser NF1 gene cause a cancer predisposition syndrome known as neurofibromatosis type 1 (NF1). This disease is one of the most common multisystem disorders with an estimated incidence of 1 in 3,000 to 1 in 4,000 births. Clinically, NF1 patients are prone to develop “café au lait” spots, neurofibromas, Lisch nodules, freckling of the axillary, or inguinal region and optic nerve gliomas.

Materials and methods

In the present study, we report clinical and molecular findings of five unrelated patients and seven cases from four families with NF1 from UAE. To reveal the genetic defects underlying NF1 in our cohort of patients, we screened the whole coding and splice site regions of the NF1 gene. In addition, MLPA or CGH array has been used to screen for structural variations including deletions, indels, and complex rearrangements.

Results

This resulted in the identification of five distinct novel mutations and two previously reported ones. These variations included three missense and one nonsense mutations, one single base, one dinucleotide, and one large deletion.

Conclusion

Four mutations were inherited, and the remaining were absent from both parents and therefore are “de novo” mutations. This analysis represents the spectrum of NF1 mutations in UAE and supports the premise of absence of hotspot mutations in the NF1 gene. Moreover, no obvious genotype-phenotype correlations were observed in our patients.

Keywords

Neurofibromatosis type 1 von Recklinghausen NF1 “de novo” mutations 

Notes

Acknowledgments

We are thankful for patients and their family members for their participation in this research study. The laboratories of L.A. and B.R.A. are funded by the United Arab Emirates University.

Conflict of interest

All authors have declared that no competing interests exist.

Supplementary material

381_2013_2352_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)
381_2013_2352_MOESM2_ESM.docx (15 kb)
ESM 2 (DOCX 15 kb)

References

  1. 1.
    Raphael R, Strayer DS (2008) Rubin's pathology: clinicopathologic foundation of medicine. Wolters Kluwer Health: Lippincot Williams & Wilkins, BaltimoreGoogle Scholar
  2. 2.
    Barker D, Wright E, Nguyen K, Cannon L, Fain P, Goldgar D, Bishop DT, Carey J, Baty B, Kivlin J (1987) Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17. Science 236:1100–1102PubMedCrossRefGoogle Scholar
  3. 3.
    Seizinger BR, Martuza RL, Gusella JF (1986) Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322:644–647PubMedCrossRefGoogle Scholar
  4. 4.
    Rasmussen SA, Friedman JM (2000) NF1 gene and neurofibromatosis 1. Am J Epidemiol 151:33–40PubMedCrossRefGoogle Scholar
  5. 5.
    Upadhyaya M (2010) Neurofibromatosis type 1: diagnosis and recent advances. Expert Opin Med Diagn 4:307–322PubMedCrossRefGoogle Scholar
  6. 6.
    Reynolds RM, Browning GG, Nawroz I, Campbell IW (2003) Von Recklinghausen's neurofibromatosis: neurofibromatosis type 1. Lancet 361:1552–1554PubMedCrossRefGoogle Scholar
  7. 7.
    (1988) Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 45: 575–578Google Scholar
  8. 8.
    Westerhof W, Konrad K (1982) Blue-red macules and pseudoatrophic macules: additional cutaneous signs in neurofibromatosis. Arch Dermatol 118:577–581PubMedCrossRefGoogle Scholar
  9. 9.
    Chiu CS, Wang JD, Yen CY, Chen YJ, Shen JL (2009) Pseudoatrophic macules associated with neurofibromatosis-1. Pediatr Dermatol 26:231–232PubMedCrossRefGoogle Scholar
  10. 10.
    Fahsold R, Hoffmeyer S, Mischung C, Gille C, Ehlers C, Kücükceylan N, Abdel-Nour M, Gewies A, Peters H, Kaufmann D, Buske A, Tinschert S, Nürnberg P (2000) Minor lesion mutational spectrum of the entire NF1 gene does not explain its high mutability but points to a functional domain upstream of the GAP-related domain. Am J Hum Genet 66:790–818PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Korf BR, Rubenstein AE (2005) Neurofibromatosis: a handbook for families, patients and health care professionals. Thieme, New YorkGoogle Scholar
  12. 12.
    Riccardi VM, Lewis RA (1988) Penetrance of von Recklinghausen neurofibromatosis: a distinction between predecessors and descendants. Am J Hum Genet 42:284–289PubMedCentralPubMedGoogle Scholar
  13. 13.
    Korf BR (2002) Clinical features and pathobiology of neurofibromatosis 1. J Child Neurol 17:573–577, discussion 602–574, 646–551PubMedCrossRefGoogle Scholar
  14. 14.
    Korf BR (2013) Neurofibromatosis. Handb Clin Neurol 111:333–340PubMedCrossRefGoogle Scholar
  15. 15.
    Theos A, Korf BR, Physicians ACo, Society AP (2006) Pathophysiology of neurofibromatosis type 1. Ann Intern Med 144:842–849PubMedCrossRefGoogle Scholar
  16. 16.
    Trovó-Marqui AB, Goloni-Bertollo EM, Valério NI, Pavarino-Bertelli EC, Muniz MP, Teixeira MF, Antonio JR, Tajara EH (2005) High frequencies of plexiform neurofibromas, mental retardation, learning difficulties, and scoliosis in Brazilian patients with neurofibromatosis type 1. Braz J Med Biol Res 38:1441–1447PubMedCrossRefGoogle Scholar
  17. 17.
    Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, Upadhyaya M, Towers R, Gleeson M, Steiger C, Kirby A (2007) Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44:81–88PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Side L, Taylor B, Cayouette M, Conner E, Thompson P, Luce M, Shannon K (1997) Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 336:1713–1720PubMedCrossRefGoogle Scholar
  19. 19.
    Steinemann D, Arning L, Praulich I, Stuhrmann M, Hasle H, Stary J, Schlegelberger B, Niemeyer CM, Flotho C (2010) Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1. Haematologica 95:320–323PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kluwe L, Hagel C, Tatagiba M, Thomas S, Stavrou D, Ostertag H, von Deimling A, Mautner VF (2001) Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol 60:917–920PubMedGoogle Scholar
  21. 21.
    Heim RA, Silverman LM, Farber RA, Kam-Morgan LN, Luce MC (1994) Screening for truncated NF1 proteins. Nat Genet 8:218–219PubMedCrossRefGoogle Scholar
  22. 22.
    Gug C, Anghel A, Tamas L, Seclaman E, Willems P (2010) Neurofibromatosis type 1—molecular testing and clinical presentation of two cases. Annals of the “Alaxendru Iaon Cuza” University SectIIa. Genet Mol Biol 11:33–38Google Scholar
  23. 23.
    Griffiths S, Thompson P, Frayling I, Upadhyaya M (2007) Molecular diagnosis of neurofibromatosis type 1: 2 years experience. Fam Cancer 6:21–34PubMedCrossRefGoogle Scholar
  24. 24.
    Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, Paepe AD (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15:541–555PubMedCrossRefGoogle Scholar
  25. 25.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081PubMedCrossRefGoogle Scholar
  26. 26.
    Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576PubMedCrossRefGoogle Scholar
  27. 27.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7:e46688PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–457PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Chapter 7: Unit7.20Google Scholar
  31. 31.
    Huson SM, Harper PS, Compston DA (1988) Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111(Pt 6):1355–1381PubMedCrossRefGoogle Scholar
  32. 32.
    Evans DG, Howard E, Giblin C, Clancy T, Spencer H, Huson SM, Lalloo F (2010) Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A 152A:327–332PubMedCrossRefGoogle Scholar
  33. 33.
    Lázaro C, Ravella A, Gaona A, Volpini V, Estivill X (1994) Neurofibromatosis type 1 due to germ-line mosaicism in a clinically normal father. N Engl J Med 331:1403–1407PubMedCrossRefGoogle Scholar
  34. 34.
    Jadayel D, Fain P, Upadhyaya M, Ponder MA, Huson SM, Carey J, Fryer A, Mathew CG, Barker DF, Ponder BA (1990) Paternal origin of new mutations in von Recklinghausen neurofibromatosis. Nature 343:558–559PubMedCrossRefGoogle Scholar
  35. 35.
    Stephens K, Kayes L, Riccardi VM, Rising M, Sybert VP, Pagon RA (1992) Preferential mutation of the neurofibromatosis type 1 gene in paternally derived chromosomes. Hum Genet 88:279–282PubMedCrossRefGoogle Scholar
  36. 36.
    Lázaro C, Gaona A, Ainsworth P, Tenconi R, Vidaud D, Kruyer H, Ars E, Volpini V, Estivill X (1996) Sex differences in mutational rate and mutational mechanism in the NF1 gene in neurofibromatosis type 1 patients. Hum Genet 98:696–699PubMedCrossRefGoogle Scholar
  37. 37.
    Upadhyaya M, Ruggieri M, Maynard J, Osborn M, Hartog C, Mudd S, Penttinen M, Cordeiro I, Ponder M, Ponder BA, Krawczak M, Cooper DN (1998) Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. Hum Genet 102:591–597PubMedCrossRefGoogle Scholar
  38. 38.
    Sabbagh A, Pasmant E, Laurendeau I, Parfait B, Barbarot S, Guillot B, Combemale P, Ferkal S, Vidaud M, Aubourg P, Vidaud D, Wolkenstein P, Network motNF (2009) Unravelling the genetic basis of variable clinical expression in neurofibromatosis 1. Hum Mol Genet 18:2768–2778PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Ars E, Kruyer H, Morell M, Pros E, Serra E, Ravella A, Estivill X, Lázaro C (2003) Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet 40:e82PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Bausch B, Borozdin W, Mautner VF, Hoffmann MM, Boehm D, Robledo M, Cascon A, Harenberg T, Schiavi F, Pawlu C, Peczkowska M, Letizia C, Calvieri S, Arnaldi G, Klingenberg-Noftz RD, Reisch N, Fassina A, Brunaud L, Walter MA, Mannelli M, MacGregor G, Palazzo FF, Barontini M, Walz MK, Kremens B, Brabant G, Pfäffle R, Koschker AC, Lohoefner F, Mohaupt M, Gimm O, Jarzab B, McWhinney SR, Opocher G, Januszewicz A, Kohlhase J, Eng C, Neumann HP, Group E-APRS (2007) Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J Clin Endocrinol Metab 92:2784–2792PubMedCrossRefGoogle Scholar
  41. 41.
    Trovó-Marqui AB, Tajara EH (2006) Neurofibromin: a general outlook. Clin Genet 70:1–13PubMedCrossRefGoogle Scholar
  42. 42.
    Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, Shannon K (1996) Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 12:144–148PubMedCrossRefGoogle Scholar
  43. 43.
    Izawa I, Tamaki N, Saya H (1996) Phosphorylation of neurofibromatosis type 1 gene product (neurofibromin) by cAMP-dependent protein kinase. FEBS Lett 382:53–59PubMedCrossRefGoogle Scholar
  44. 44.
    Gregory PE, Gutmann DH, Mitchell A, Park S, Boguski M, Jacks T, Wood DL, Jove R, Collins FS (1993) Neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules. Somat Cell Mol Genet 19:265–274PubMedCrossRefGoogle Scholar
  45. 45.
    Mousley CJ, Tyeryar KR, Vincent-Pope P, Bankaitis VA (2007) The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Biochim Biophys Acta 1771:727–736PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Hannan F, Ho I, Tong JJ, Zhu Y, Nurnberg P, Zhong Y (2006) Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Hum Mol Genet 15:1087–1098PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Gray TM, Arnoys EJ, Blankespoor S, Born T, Jagar R, Everman R, Plowman D, Stair A, Zhang D (1996) Destabilizing effect of proline substitutions in two helical regions of T4 lysozyme: leucine 66 to proline and leucine 91 to proline. Protein Sci 5:742–751PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Patrakitkomjorn S, Kobayashi D, Morikawa T, Wilson MM, Tsubota N, Irie A, Ozawa T, Aoki M, Arimura N, Kaibuchi K, Saya H, Araki N (2008) Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem 283:9399–9413PubMedCrossRefGoogle Scholar
  49. 49.
    Yunoue S, Tokuo H, Fukunaga K, Feng L, Ozawa T, Nishi T, Kikuchi A, Hattori S, Kuratsu J, Saya H, Araki N (2003) Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem 278:26958–26969PubMedCrossRefGoogle Scholar
  50. 50.
    Yin B, Delwel R, Valk PJ, Wallace MR, Loh ML, Shannon KM, Largaespada DA (2009) A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 113:1075–1085PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H, Ley TJ, Akashi K, Le Beau MM, Gilliland DG (2006) Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 108:1708–1715PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Jones AC, Shyamsundar MM, Thomas MW, Maynard J, Idziaszczyk S, Tomkins S, Sampson JR, Cheadle JP (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am J Hum Genet 64:1305–1315PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRefGoogle Scholar
  54. 54.
    Suzuki T, Ishioka C, Kato S, Mitachi Y, Shimodaira H, Sakayori M, Shimada A, Asamura M, Kanamaru R (1998) Detection of APC mutations by a yeast-based protein truncation test (YPTT). Genes Chromosomes Cancer 21:290–297PubMedCrossRefGoogle Scholar
  55. 55.
    Jeong SY, Park SJ, Kim HJ (2006) The spectrum of NF1 mutations in Korean patients with neurofibromatosis type 1. J Korean Med Sci 21:107–112PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    De Luca A, Schirinzi A, Buccino A, Bottillo I, Sinibaldi L, Torrente I, Ciavarella A, Dottorini T, Porciello R, Giustini S, Calvieri S, Dallapiccola B (2004) Novel and recurrent mutations in the NF1 gene in Italian patients with neurofibromatosis type 1. Hum Mutat 23:629PubMedCrossRefGoogle Scholar
  57. 57.
    Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Salma Ben-Salem
    • 1
  • Aisha M. Al-Shamsi
    • 2
  • Bassam R. Ali
    • 1
  • Lihadh Al-Gazali
    • 3
    Email author
  1. 1.Department of Pathology, College of Medicine and Heath SciencesUnited Arab Emirates UniversityAl-AinUnited Arab Emirates
  2. 2.Department of PaediatricsTawam HospitalAl-AinUnited Arab Emirates
  3. 3.Department of Paediatrics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl-AinUnited Arab Emirates

Personalised recommendations