Child's Nervous System

, Volume 29, Issue 1, pp 55–64 | Cite as

Changes in the biological characteristics of glioma cancer stem cells after serial in vivo subtransplantation

  • Ga-Yeong Shin
  • Jin-Kyoung Shim
  • Ji-Hyun Lee
  • Hye-Jin Shin
  • Su-Jae Lee
  • Yong-Min Huh
  • Eui-Hyun Kim
  • Eun-Kyung Park
  • Se-Hoon Kim
  • Jong Hee Chang
  • Dong-Seok Kim
  • Yong-Kil Hong
  • Sun Ho Kim
  • Seok-Gu Kang
  • Frederick F. Lang
Original Paper



Currently, the interaction between the niche and glioma cancer stem cells (gCSCs) is gaining attention. However, there are few studies concerned with the effects of repeated exposure to a new microenvironment on gCSCs characteristics. In this study, serial in vivo subtransplantation was performed to create a new microenvironment. We evaluated and compared the biological characteristics of gCSCs after serial in vivo subtransplantation.


We cultured gCSCs from human glioma specimens according to cultured gliomasphere methods. The isolated gCSCs were termed zero-generation gCSCs (G0-gCSCs). By subsequent serial subtransplantation, we obtained first-generation gCSCs (G1-gCSCs) and second-generation gCSCs (G2-gCSCs). We evaluated and compared the biological characteristics of G0-gCSCs, G1-gCSCs, and G2-gCSCs. The in vitro characteristics included the morphology, surface marker profiles, and neural differentiation capacity and the in vivo characteristics was the survival of mice xenografts. Additionally, brain sections were analyzed using PCNA, TUNEL, and CD31 staining.


We observed no significant differences in the in vitro characteristics of G0-gCSCs, G1-gCSCs, and G2-gCSCs. However, the survival time of mice glioma xenografts was significantly decreased upon serial subtransplantation. In addition, immunohistochemical analyses showed that the number of TUNEL+ cells was significantly decreased while the number of CD31+ cells was significantly increased with serial in vivo subtransplantation.


There were significant in vivo biological changes in gCSCs upon serial in vivo subtransplantation, which were shorter xenograft survival, increased angiogenesis, and decreased apoptosis. This study suggests that the repeated exposure to new microenvironments may affect the biological changes in gCSCs in vivo.


Glioma Glioma cancer stem cell Stem cell niche Serial subtransplantation 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0004506) and a grant from the National R&D Program for Cancer Control, Ministry for Health, Welfare and Family Affairs, Republic of Korea (1020340).

Conflict of interest

The authors declare no potential conflict of interest.


  1. 1.
    Annabi B, Rojas-Sutterlin S, Laflamme C, Lachambre MP, Rolland Y, Sartelet H, Beliveau R (2008) Tumor environment dictates medulloblastoma cancer stem cell expression and invasive phenotype. Mol Cancer Res 6(6):907–916PubMedCrossRefGoogle Scholar
  2. 2.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284PubMedCrossRefGoogle Scholar
  3. 3.
    Dingli D, Michor F (2006) Successful therapy must eradicate cancer stem cells. Stem Cells 24(12):2603–2610PubMedCrossRefGoogle Scholar
  4. 4.
    Dirks PB (2008) Brain tumor stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 26(17):2916–2924PubMedCrossRefGoogle Scholar
  5. 5.
    Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67(8):3560–3564PubMedCrossRefGoogle Scholar
  6. 6.
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710PubMedCrossRefGoogle Scholar
  7. 7.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021PubMedCrossRefGoogle Scholar
  8. 8.
    Goplen D, Bougnaud S, Rajcevic U, Boe SO, Skaftnesmo KO, Voges J, Enger PO, Wang J, Tysnes BB, Laerum OD, Niclou S, Bjerkvig R (2010) alphaB-crystallin is elevated in highly infiltrative apoptosis-resistant glioblastoma cells. Am J Pathol 177(4):1618–1628PubMedCrossRefGoogle Scholar
  9. 9.
    Hambardzumyan D, Squatrito M, Holland EC (2006) Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10(6):454–456PubMedCrossRefGoogle Scholar
  10. 10.
    Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99(21):1583–1593PubMedCrossRefGoogle Scholar
  11. 11.
    Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A 97(12):6242–6244PubMedCrossRefGoogle Scholar
  12. 12.
    Hussein D, Punjaruk W, Storer LC, Shaw L, Ottoman R, Peet A, Miller S, Bandopadhyay G, Heath R, Kumari R, Bowman KJ, Braker P, Rahman R, Jones GD, Watson S, Lowe J, Kerr ID, Grundy RG, Coyle B (2011) Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion. Neuro Oncol 13(1):70–83PubMedCrossRefGoogle Scholar
  13. 13.
    Jin X, Jeon HY, Joo KM, Kim JK, Jin J, Kim SH, Kang BG, Beck S, Lee SJ, Park AK, Park WY, Choi YJ, Nam DH, Kim H (2011) Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation. Cancer Res 71(8):3066–3075PubMedCrossRefGoogle Scholar
  14. 14.
    Johannessen TC, Wang J, Skaftnesmo KO, Sakariassen PO, Enger PO, Petersen K, Oyan AM, Kalland KH, Bjerkvig R, Tysnes BB (2009) Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathol Appl Neurobiol 35(4):380–393PubMedCrossRefGoogle Scholar
  15. 15.
    Kang SG, Shinojima N, Hossain A, Gumin J, Yong RL, Colman H, Marini F, Andreeff M, Lang FF (2010) Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 67(3):711–720PubMedCrossRefGoogle Scholar
  16. 16.
    Kievit FM, Florczyk SJ, Leung MC, Veiseh O, Park JO, Disis ML, Zhang M (2010) Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials 31(22):5903–5910PubMedCrossRefGoogle Scholar
  17. 17.
    Kim SM, Kang SG, Park NR, Mok HS, Huh YM, Lee SJ, Jeun SS, Hong YK, Park CK, Lang FF (2011) Presence of glioma stroma mesenchymal stem cells in a murine orthotopic glioma model. Childs Nerv Syst 27(6):911–922PubMedCrossRefGoogle Scholar
  18. 18.
    Lal S, Lacroix M, Tofilon P, Fuller GN, Sawaya R, Lang FF (2000) An implantable guide–screw system for brain tumor studies in small animals. J Neurosurg 92(2):326–333PubMedCrossRefGoogle Scholar
  19. 19.
    Lasky JL 3rd, Choe M, Nakano I (2009) Cancer stem cells in pediatric brain tumors. Curr Stem Cell Res Ther 4(4):298–305PubMedCrossRefGoogle Scholar
  20. 20.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9(5):391–403PubMedCrossRefGoogle Scholar
  21. 21.
    Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ, Rosenblum M, Mikkelsen T, Zenklusen JC, Fine HA (2008) Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 6(1):21–30PubMedCrossRefGoogle Scholar
  22. 22.
    Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66(9):4553–4557PubMedCrossRefGoogle Scholar
  23. 23.
    Lin H (2002) The stem-cell niche theory: lessons from flies. Nat Rev Genet 3(12):931–940PubMedCrossRefGoogle Scholar
  24. 24.
    Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411(6835):375–379PubMedCrossRefGoogle Scholar
  25. 25.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109PubMedCrossRefGoogle Scholar
  26. 26.
    Mangiola A, Anile C, Pompucci A, Capone G, Rigante L, De Bonis P (2010) Glioblastoma therapy: going beyond Hercules Columns. Expert Rev Neurother 10(4):507–514PubMedCrossRefGoogle Scholar
  27. 27.
    Manoranjan B, Venugopal C, McFarlane N, Doble BW, Dunn SE, Scheinemann K, Singh SK (2012) Medulloblastoma stem cells: where development and cancer cross pathways. Pediatr Res 71(4 Pt 2):516–522PubMedCrossRefGoogle Scholar
  28. 28.
    Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318PubMedGoogle Scholar
  29. 29.
    Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331PubMedCrossRefGoogle Scholar
  30. 30.
    Rahman M, Deleyrolle L, Vedam-Mai V, Azari H, Abd-El-Barr M, Reynolds BA (2011) The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery 68(2):531–545, discussion 545PubMedCrossRefGoogle Scholar
  31. 31.
    Rajcevic U, Petersen K, Knol JC, Loos M, Bougnaud S, Klychnikov O, Li KW, Pham TV, Wang J, Miletic H, Peng Z, Bjerkvig R, Jimenez CR, Niclou SP (2009) iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-talk in angiogenic compared with invasive glioblastoma phenotype. Mol Cell Proteomics 8(11):2595–2612PubMedCrossRefGoogle Scholar
  32. 32.
    Sakariassen PO, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C, Sminia P, Sundlisaeter E, Misra A, Tysnes BB, Chekenya M, Peters H, Lende G, Kalland KH, Oyan AM, Petersen K, Jonassen I, van der Kogel A, Feuerstein BG, Terzis AJ, Bjerkvig R, Enger PO (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci U S A 103(44):16466–16471PubMedCrossRefGoogle Scholar
  33. 33.
    Shu Q, Wong KK, Su JM, Adesina AM, Yu LT, Tsang YT, Antalffy BC, Baxter P, Perlaky L, Yang J, Dauser RC, Chintagumpala M, Blaney SM, Lau CC, Li XN (2008) Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 26(6):1414–1424PubMedCrossRefGoogle Scholar
  34. 34.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  35. 35.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRefGoogle Scholar
  36. 36.
    Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414(6859):98–104PubMedCrossRefGoogle Scholar
  37. 37.
    Stewart PA, Farrell CL, Del Maestro RF (1991) The effect of cellular microenvironment on vessels in the brain. Part 1: vessel structure in tumour, peritumour and brain from humans with malignant glioma. Int J Radiat Biol 60(1–2):125–130PubMedCrossRefGoogle Scholar
  38. 38.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRefGoogle Scholar
  39. 39.
    Vik-Mo EO, Sandberg C, Olstorn H, Varghese M, Brandal P, Ramm-Pettersen J, Murrell W, Langmoen IA (2010) Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions. Neuro Oncol 12(12):1220–1230PubMedGoogle Scholar
  40. 40.
    Xie X, Hiona A, Lee AS, Cao F, Huang M, Li Z, Cherry A, Pei X, Wu JC (2011) Effects of long-term culture on human embryonic stem cell aging. Stem Cells Dev 20(1):127–138PubMedCrossRefGoogle Scholar
  41. 41.
    Xouri G, Christian S (2010) Origin and function of tumor stroma fibroblasts. Semin Cell Dev Biol 21(1):40–46PubMedCrossRefGoogle Scholar
  42. 42.
    Yu L, Baxter PA, Voicu H, Gurusiddappa S, Zhao Y, Adesina A, Man TK, Shu Q, Zhang YJ, Zhao XM, Su JM, Perlaky L, Dauser R, Chintagumpala M, Lau CC, Blaney SM, Rao PH, Leung HC, Li XN (2010) A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro Oncol 12(6):580–594PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ga-Yeong Shin
    • 1
  • Jin-Kyoung Shim
    • 2
  • Ji-Hyun Lee
    • 2
  • Hye-Jin Shin
    • 3
  • Su-Jae Lee
    • 4
  • Yong-Min Huh
    • 5
  • Eui-Hyun Kim
    • 2
  • Eun-Kyung Park
    • 2
  • Se-Hoon Kim
    • 6
  • Jong Hee Chang
    • 2
  • Dong-Seok Kim
    • 2
  • Yong-Kil Hong
    • 3
  • Sun Ho Kim
    • 2
  • Seok-Gu Kang
    • 2
  • Frederick F. Lang
    • 7
  1. 1.Department of Medical ScienceThe Catholic University of KoreaSeoulSouth Korea
  2. 2.Department of Neurosurgery, Severance HospitalYonsei University College of MedicineSeodaemun-guSouth Korea
  3. 3.Department of Neurosurgery, Seoul St. Mary’s HospitalThe Catholic University of KoreaSeoulSouth Korea
  4. 4.Department of ChemistryHanyang UniversitySeoulSouth Korea
  5. 5.Department of Radiology, Severance HospitalYonsei University College of MedicineSeoulSouth Korea
  6. 6.Department of Pathology, Severance HospitalYonsei University College of MedicineSeoulSouth Korea
  7. 7.Department of NeurosurgeryThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations