Child's Nervous System

, Volume 28, Issue 9, pp 1577–1588

A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors

  • James Tait Goodrich
  • Adam L. Sandler
  • Oren Tepper
Special Annual Issue


Over the last 40 years, craniofacial surgery, in general, and surgery for craniosynostosis, in particular, has witnessed the introduction of a number of new materials for use in operations involving the cranial vault. Some of these materials have proven quite useful over time, while others have failed to meet their stated objectives. In this review, the more popular implant materials are analyzed, and their relative merits and drawbacks are discussed. Craniofacial surgery in the pediatric population has its own unique limitations, quite different from the adult population and those issues are reviewed as well.


Craniosynostosis Bioabsorbable fixation Autologous/autogenous cranioplasty Allograft cranioplasty Skull defect Custom-made implants Biomaterial Hydroxyapatite Resorbable plates and screws Methyl methacrylate Bone cement Calvarial bone grafts Pediatric neurosurgery 


  1. 1.
    Eppley BL, Sadove AM (1995) A comparison of resorbable and metallic fixation in healing of calvarial bone grafts. Plast Reconstr Surg 96:316PubMedCrossRefGoogle Scholar
  2. 2.
    Fearon JA, Munro IR, Bruce DA (1995) Observations on the use of rigid fixation for craniofacial deformities in infants and young children. Plast Reconstr Surg 95:634PubMedCrossRefGoogle Scholar
  3. 3.
    Goldberg DS, Bartlett SP, Yu JC, Hunter JV, Whitaker LA (1995) Critical review of microfixation in pediatric craniofacial surgery. Journal of Craniofacial Surgery 6:301PubMedCrossRefGoogle Scholar
  4. 4.
    Duke B, Mouchantat R, Ketch L, Winston K (1996) Transcranial migration of microf ixation plates and screws. Pediatr Neurosurg 25:31–35PubMedCrossRefGoogle Scholar
  5. 5.
    Munro IR, Fearon JA, Bruce DA (1993) Complications of rigid fixation in infants and children. Presented at the Fifth International Congress of the International Society of Craniofacial Surgery. Oaxaca, MexicoGoogle Scholar
  6. 6.
    Ahmad N, Lyles J, Panchal J (2008) Outcomes and complications based on experience with resorbable plates in pediatric craniosynostosis patients. Journal of Craniofacial Surgery 19:855PubMedCrossRefGoogle Scholar
  7. 7.
    Eppley BL, Reilly M (1997) Degradation characteristics of PLLA-PGA bone fixation devices. The Journal of craniofacial surgery 8:116PubMedCrossRefGoogle Scholar
  8. 8.
    Eppley BL, Morales L, Wood R, Pensler J, Goldstein J, Havlik RJ, Habal M, Losken A, Williams JK, Burstein F (2004) Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Surg 114:850PubMedCrossRefGoogle Scholar
  9. 9.
    Kurpad SN, Goldstein JA, Cohen AR (2000) Bioresorbable fixation for congenital pediatric craniofacial surgery: a 2-year follow-up. Pediatr Neurosurg 33:306–310PubMedCrossRefGoogle Scholar
  10. 10.
    Brevi BC, Magri AS, Toma L, Sesenna E (2010) Cranioplasty for repair of a large bone defect with autologous and homologous bone in children. J Pediatr Surg 45:e17–e20PubMedCrossRefGoogle Scholar
  11. 11.
    Bruce JN, Bruce SS (2003) Preservation of bone flaps in patients with postcraniotomy infections. J Neurosurg 98:1203–1207PubMedCrossRefGoogle Scholar
  12. 12.
    Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD (2004) Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. Journal of Neurosurgery: Pediatrics 100:163–168CrossRefGoogle Scholar
  13. 13.
    Jho DH, Neckrysh S, Hardman J, Charbel FT, Amin-Hanjani S (2007) Ethylene oxide gas sterilization: a simple technique for storing explanted skull bone. Journal of Neurosurgery: Pediatrics 107:440–445Google Scholar
  14. 14.
    Lee C, Antonyshyn OM, Forrest CR (1995) Cranioplasty: indications, technique, and early results of autogenous split skull cranial vault reconstruction. Journal of Cranio-Maxillofacial Surgery 23:133–142PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuno A, Tanaka H, Iwamuro H, Takanashi S, Miyawaki S, Nakashima M, Nakaguchi H, Nagashima T (2006) Analyses of the factors influencing bone graft infection after delayed cranioplasty. Acta Neurochir (Wien) 148:535–540CrossRefGoogle Scholar
  16. 16.
    Moreira-Gonzalez A, Jackson IT, Miyawaki T, Barakat K, DiNick V (2003) Clinical outcome in cranioplasty: critical review in long-term follow-up. Journal of Craniofacial Surgery 14:144PubMedCrossRefGoogle Scholar
  17. 17.
    Sahoo N, Roy ID, Desai AP, Gupta V (2010) Comparative evaluation of autogenous calvarial bone graft and alloplastic materials for secondary reconstruction of cranial defects. Journal of Craniofacial Surgery 21:79PubMedCrossRefGoogle Scholar
  18. 18.
    Afifi AM, Gordon CR, Pryor LS, Sweeney W, Papay FA, Zins JE (2010) Calcium phosphate cements in skull reconstruction: a meta-analysis. Plast Reconstr Surg 126:1300PubMedCrossRefGoogle Scholar
  19. 19.
    Costantino PD, Chaplin JM, Wolpoe ME, Catalano PJ, Sen C, Bederson JB, Govindaraj S (2000) Applications of fast-setting hydroxyapatite cement: cranioplasty. Otolaryngology—Head and Neck Surgery 123:409PubMedCrossRefGoogle Scholar
  20. 20.
    Dean D, Topham NS, Rimnac C, Mikos AG, Goldberg DP, Jepsen K, Redtfeldt R, Liu Q, Pennington D, Ratcheson R (1999) Osseointegration of preformed polymethylmethacrylate craniofacial prostheses coated with bone marrow-impregnated poly (DL-lactic-co-glycolic acid) foam. Plast Reconstr Surg 104:705PubMedCrossRefGoogle Scholar
  21. 21.
    David L, Argenta L, Fisher D (2005) Hydroxyapatite cement in pediatric craniofacial reconstruction. Journal of Craniofacial Surgery 16:129PubMedCrossRefGoogle Scholar
  22. 22.
    De Bonis P, Frassanito P, nucci cg, mangiola a, Anile C, Pompucci A (2011) Cranial repair: how complicated is filling a ‘hole’. Journal of Neurotrauma 29:1071–1076Google Scholar
  23. 23.
    Dujovny M, Aviles A, Anger C (1997) An innovative approach for cranioplasty using hydroxyapatite cement. Surg Neurol 48:294PubMedCrossRefGoogle Scholar
  24. 24.
    Durham SR, McComb JG, Levy ML (2003) Correction of large (> 25 cm2) cranial defects with" reinforced" hydroxyapatite cement: technique and complications. Neurosurgery 52:842PubMedCrossRefGoogle Scholar
  25. 25.
    Friedman CD, Costantino PD, Takagi S, Chow LC (1998) BoneSource™ hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 43:428–432PubMedCrossRefGoogle Scholar
  26. 26.
    Gilardino MS, Cabiling DS, Bartlett SP (2009) Long-term follow-up experience with carbonated calcium phosphate cement (Norian) for cranioplasty in children and adults. Plast Reconstr Surg 123:983PubMedCrossRefGoogle Scholar
  27. 27.
    Gómez E, Martín M, Arias J, Carceller F (2005) Clinical applications of Norian SRS (calcium phosphate cement) in craniofacial reconstruction in children: Our experience at Hospital La Paz since 2001. Journal of oral and maxillofacial surgery 63:8–14PubMedCrossRefGoogle Scholar
  28. 28.
    Gosain AK, Song L, Riordan P, Amarante MT, Nagy PG, Wilson CR, Toth JM, Ricci JL (2002) A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: Part I. Plast Reconstr Surg 109:619PubMedCrossRefGoogle Scholar
  29. 29.
    Greenberg BM, Schneider SJ (2005) Alloplastic reconstruction of large cranio-orbital defects: a comparative evaluation. Ann Plast Surg 55:43PubMedCrossRefGoogle Scholar
  30. 30.
    Herron S, Thordarson DB, Winet H, Luk A, Bao J (2003) Ingrowth of bone into absorbable bone cement: an in vivo microscopic evaluation. American journal of orthopedics (Belle Mead, NJ) 32:581Google Scholar
  31. 31.
    Jackson IT, Yavuzer R (2000) Hydroxyapatite cement: an alternative for craniofacial skeletal contour refinements. Br J Plast Surg 53:24–29PubMedCrossRefGoogle Scholar
  32. 32.
    Kirschner RE, Karmacharya J, Ong G, Gordon AD, Hunenko O, Losee JE, Gannon FH, Bartlett SP (2002) Repair of the immature craniofacial skeleton with a calcium phosphate cement: quantitative assessment of craniofacial growth. Ann Plast Surg 49:33PubMedCrossRefGoogle Scholar
  33. 33.
    Matic D, Phillips JH (2002) A contraindication for the use of hydroxyapatite cement in the pediatric population. Plast Reconstr Surg 110:1PubMedCrossRefGoogle Scholar
  34. 34.
    Miller L, Guerra AB, Bidros RS, Trahan C, Baratta R, Metzinger SE (2005) A comparison of resistance to fracture among four commercially available forms of hydroxyapatite cement. Ann Plast Surg 55:87PubMedCrossRefGoogle Scholar
  35. 35.
    Poetker DM, Pytynia KB, Meyer GA, Wackym PA (2004) Complication rate of transtemporal hydroxyapatite cement cranioplasties: a case series review of 76 cranioplasties. Otology & Neurotology 25:604CrossRefGoogle Scholar
  36. 36.
    Verret D, Ducic Y, Oxford L, Smith J (2005) Hydroxyapatite cement in craniofacial reconstruction. Otolaryngology-Head and Neck Surgery 133:897–899PubMedCrossRefGoogle Scholar
  37. 37.
    Wong RK, Gandolfi BM, St-Hilaire H, Wise MW, Moses M (2011) Complications of hydroxyapatite bone cement in secondary pediatric craniofacial reconstruction. Journal of Craniofacial Surgery 22:247PubMedCrossRefGoogle Scholar
  38. 38.
    Zins JE, Moreira-Gonzalez A, Papay FA (2007) Use of calcium-based bone cements in the repair of large, full-thickness cranial defects: a caution. Plast Reconstr Surg 120:1332PubMedCrossRefGoogle Scholar
  39. 39.
    Arnaud E (2000) Advances in cranioplasty with osteoinductive biomaterials: summary of experimental studies and clinical prospects. Child's Nervous System 16:659–668PubMedCrossRefGoogle Scholar
  40. 40.
    Rubin JP, Yaremchuk MJ (1997) Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery: a comprehensive review of the literature. Plast Reconstr Surg 100:1336PubMedCrossRefGoogle Scholar
  41. 41.
    Arnaud E, De Pollak C, Meunier A, Sedel L, Damien C, Petite H (1999) Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 20:1909–1918PubMedCrossRefGoogle Scholar
  42. 42.
    Neovius E, Engstrand T (2010) Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. Journal of plastic, reconstructive & aesthetic surgery 63:1615–1623CrossRefGoogle Scholar
  43. 43.
    Sanus GZ, Tanriverdi T, Ulu MO, Kafadar AM, Tanriover N, Ozlen F (2008) Use of Cortoss (TM) as an alternative material in calvarial defects: the first clinical results in cranioplasty. Journal of Craniofacial Surgery 19:88PubMedCrossRefGoogle Scholar
  44. 44.
    Verheggen R, Merten H (2001) Correction of skull defects using hydroxyapatite cement (HAC)—evidence derived from animal experiments and clinical experience. Acta Neurochir (Wien) 143:919–926CrossRefGoogle Scholar
  45. 45.
    Zins JE, Moreira-Gonzalez A, Parikh A, Arslan E, Bauer T, Siemionow M (2008) Biomechanical and histologic evaluation of the Norian craniofacial repair system and Norian Craniofacial Repair System Fast Set Putty in the long-term reconstruction of full-thickness skull defects in a sheep model. Plast Reconstr Surg 121:271ePubMedCrossRefGoogle Scholar
  46. 46.
    Couldwell WT, Chen TC, Weiss MH, Fukushima T, Dougherty W (1994) Cranioplasty with the Medpor porous polyethylene Flexblock implant. J Neurosurg 81:483–486PubMedCrossRefGoogle Scholar
  47. 47.
    Klawitter J, Bagwell J, Weinstein A, Sauer B, Pruitt J (1976) An evaluation of bone growth into porous high density polyethylene. J Biomed Mater Res 10:311–323PubMedCrossRefGoogle Scholar
  48. 48.
    Liu JK, Gottfried ON, Cole CD, Dougherty WR, Couldwell WT (2004) Porous polyethylene implant for cranioplasty and skull base reconstruction. Neurosurg Focus 16:1–5Google Scholar
  49. 49.
    Sevin K, Askar I, Saray A, Yormuk E (2000) Exposure of high-density porous polyethylene (Medpor®) used for contour restoration and treatment. Br J Oral Maxillofac Surg 38:44–49PubMedCrossRefGoogle Scholar
  50. 50.
    Spector M, Flemming W, Kreutner A, Sauer B (1976) Bone growth into porous high–density polyethylene. J Biomed Mater Res 10:595–603PubMedCrossRefGoogle Scholar
  51. 51.
    Arnander C, Westermark A, Veltheim R, Docherty-Skogh AC, Hilborn J, Engstrand T (2006) Three-dimensional technology and bone morphogenetic protein in frontal bone reconstruction. Journal of Craniofacial Surgery 17:275PubMedCrossRefGoogle Scholar
  52. 52.
    Heissler E, Fischer FS, Boiouri S, Lehrnann T, Mathar W, Gebhardt A, Lanksch W, Bler J (1998) Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. International journal of oral and maxillofacial surgery 27:334–338PubMedCrossRefGoogle Scholar
  53. 53.
    Kriegel R, Schaller C, Clusmann H (2007) Cranioplasty for large skull defects with PMMA (polymethylmethacrylate) or Tutoplast® processed autogenic bone grafts [Kalottenplastik für große Schädeldefekte mit PMMA (Polymethylmethacrylat) oder Tutoplast® prozessierten autogenen Knochentransplantaten]. Zentralbl Neurochir 68:182–189PubMedCrossRefGoogle Scholar
  54. 54.
    Rohner D, Hutmacher D, See P, Tan K, Yeow V, Tan S, Lee S, Hammer B (2002) Individually CAD-CAM technique designed, bioresorbable 3-dimensional polycaprolactone framework for experimental reconstruction of craniofacial defects in the pig. Mund-, Kiefer-und Gesichtschirurgie: MKG 6:162PubMedCrossRefGoogle Scholar
  55. 55.
    Schantz JT, Hutmacher DW, Lam CXF, Brinkmann M, Wong KM, Lim TC, Chou N, Guldberg RE, Teoh SH (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo Tissue engineering 9:127–139Google Scholar
  56. 56.
    Staffa G, Barbanera A, Faiola A, Fricia M, Limoni P, Mottaran R, Zanotti B, Stefini R (2012) Custom made bioceramic implants in complex and large cranial reconstruction: A two-year follow-up. Journal of Cranio-Maxillo-Facial Surgery 40:e65–370Google Scholar
  57. 57.
    Cabraja M, Klein M, Lehmann TN (2009) Long-term results following titanium cranioplasty of large skull defects. Neurosurgical Focus 26:E10Google Scholar
  58. 58.
    Eufinger H, Wehmöller M (1998) Individual prefabricated titanium implants in reconstructive craniofacial surgery: clinical and technical aspects of the first 22 cases. Plast Reconstr Surg 102:300PubMedCrossRefGoogle Scholar
  59. 59.
    Kuttenberger JJ, Hardt N (2001) Long-term results following reconstruction of craniofacial defects with titanium micro-mesh systems. Journal of Cranio-Maxillofacial Surgery 29:75–81PubMedCrossRefGoogle Scholar
  60. 60.
    Malis LI (1989) Titanium mesh and acrylic cranioplasty. Neurosurgery 25:351PubMedCrossRefGoogle Scholar
  61. 61.
    Kübler N, Reinhart E, Pistner H, Bill J, Reuther J (1998) Klinischer Einsatz osteoinduktiver Implantate in der kraniofazialen Chirurgie. Mund-, Kiefer-und Gesichtschirurgie 2:32–36CrossRefGoogle Scholar
  62. 62.
    Warnke P, Springer I, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo P, Bolte H, Sherry E, Behrens E (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–770PubMedCrossRefGoogle Scholar
  63. 63.
    Durand JL, Renier D, Marchac D (1997) L'histoire des cranioplasties. Elsevier Masson, pp 75–83Google Scholar
  64. 64.
    Marchac D, Greensmith A (2008) Long-term experience with methylmethacrylate cranioplasty in craniofacial surgery. Journal of plastic, reconstructive & aesthetic surgery 61:744–752CrossRefGoogle Scholar
  65. 65.
    Pochon J, Kloti J (1991) Cranioplasty for acquired skull defects in children: a comparison between autologous material and methylmethacrylate 1974–1990. Eur J Pediatr Surg 1:199–201PubMedCrossRefGoogle Scholar
  66. 66.
    Blum K, Schneider S, Rosenthal A (1997) Methyl methacrylate cranioplasty in children: long-term results. Pediatr Neurosurg 26:33–35PubMedCrossRefGoogle Scholar
  67. 67.
    Ilizarov G (1954) A new principle of osteosynthesis with the use of crossing pins and rings. Collection of Scientific Works of the Kurgan Regional Scientific Medical Society: 145–160Google Scholar
  68. 68.
    McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH (1992) Lengthening the human mandible by gradual distraction. Plast Reconstr Surg 89:1PubMedCrossRefGoogle Scholar
  69. 69.
    Mofid MM, Manson PN, Robertson BC, Tufaro AP, Elias JJ, Vander Kolk CA (2001) Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg 108:1103PubMedCrossRefGoogle Scholar
  70. 70.
    Figueroa AA, Polley JW, Friede H, Ko EW (2004) Long-term skeletal stability after maxillary advancement with distraction osteogenesis using a rigid external distraction device in cleft maxillary deformities. Plast Reconstr Surg 114:1382PubMedCrossRefGoogle Scholar
  71. 71.
    Flores RL, Shetye PR, Zeitler D, Bernstein J, Wang E, Grayson BH, McCarthy JG (2009) Airway changes following Le Fort III distraction osteogenesis for syndromic craniosynostosis: a clinical and cephalometric study. Plast Reconstr Surg 124:590PubMedCrossRefGoogle Scholar
  72. 72.
    Bradley JP, Gabbay JS, Taub PJ, Heller JB, O'Hara CM, Benhaim P, Kawamoto HK Jr (2006) Monobloc advancement by distraction osteogenesis decreases morbidity and relapse. Plast Reconstr Surg 118:1585PubMedCrossRefGoogle Scholar
  73. 73.
    Yu JC, Fearon J, Havlik RJ, Buchman SR, Polley JW (2004) Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg 114:1ePubMedCrossRefGoogle Scholar
  74. 74.
    Yano H, Tanaka K, Sueyoshi O, Takahashi K, Hirata R, Hirano A (2006) Cranial vault distraction: its illusionary effect and limitation. Plast Reconstr Surg 117:193PubMedCrossRefGoogle Scholar
  75. 75.
    Orringer JS, Barcelona V, Buchman SR (1998) Reasons for removal of rigid internal fixation devices in craniofacial surgery. The Journal of craniofacial surgery 9:40PubMedCrossRefGoogle Scholar
  76. 76.
    McCarthy JG, Stelnicki EJ, Mehrara BJ, Longaker MT (2001) Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg 107:1812PubMedCrossRefGoogle Scholar
  77. 77.
    Fearon JA (2005) Halo distraction of the Le Fort III in syndromic craniosynostosis: a long-term assessment. Plast Reconstr Surg 115:1524PubMedCrossRefGoogle Scholar
  78. 78.
    Rachmiel A, Aizenbud D, Peled M (2006) Distraction osteogenesis in maxillary deficiency using a rigid external distraction device. Plast Reconstr Surg 117:2399PubMedCrossRefGoogle Scholar
  79. 79.
    Shetye PR, Kapadia H, Grayson BH, McCarthy JG (2010) A 10-year study of skeletal stability and growth of the midface following Le Fort III advancement in syndromic craniosynostosis. Plast Reconstr Surg 126:973PubMedCrossRefGoogle Scholar
  80. 80.
    Chin M, Toth BA (1997) Le Fort III advancement with gradual distraction using internal devices. Plast Reconstr Surg 100:819PubMedCrossRefGoogle Scholar
  81. 81.
    Cohen SR (1999) Craniofacial distraction with a modular internal distraction system: evolution of design and surgical techniques. Plast Reconstr Surg 103:1592PubMedCrossRefGoogle Scholar
  82. 82.
    Davis C, Windh P, Lauritzen CGK (2009) Spring-assisted cranioplasty alters the growth vectors of adjacent cranial sutures. Plast Reconstr Surg 123:470PubMedCrossRefGoogle Scholar
  83. 83.
    Maltese G, Tarnow P, Lauritzen CG (2007) Spring-assisted correction of hypotelorism in metopic synostosis. Plast Reconstr Surg 119:977PubMedCrossRefGoogle Scholar
  84. 84.
    Steinbacher DM, Skirpan J, Puchala J, Bartlett SP (2011) Expansion of the posterior cranial vault using distraction osteogenesis. Plast Reconstr Surg 127:792PubMedCrossRefGoogle Scholar
  85. 85.
    Lauritzen CGK, Davis C, Ivarsson A, Sanger C, Hewitt TD (2008) The evolving role of springs in craniofacial surgery: the first 100 clinical cases. Plast Reconstr Surg 121:545PubMedCrossRefGoogle Scholar
  86. 86.
    Alsberg E, Hill E, Mooney D (2001) Craniofacial tissue engineering. Critical Reviews in Oral Biology & Medicine 12:64–75CrossRefGoogle Scholar
  87. 87.
    Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560–567PubMedCrossRefGoogle Scholar
  88. 88.
    Lee JA, Parrett BM, Conejero JA, Laser J, Chen J, Kogon AJ, Nanda D, Grant RT, Breitbart AS (2003) Biological alchemy: engineering bone and fat from fat-derived stem cells. Ann Plast Surg 50:610PubMedCrossRefGoogle Scholar
  89. 89.
    Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of Cranio-Maxillofacial Surgery 32:370–373PubMedCrossRefGoogle Scholar
  90. 90.
    Mao J, Giannobile W, Helms J, Hollister S, Krebsbach P, Longaker M, Shi S (2006) Craniofacial tissue engineering by stem cells. J Dent Res 85:966–979PubMedCrossRefGoogle Scholar
  91. 91.
    Quarto R, Mastrogiacomo M, Cancedda R, Kutepov S, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385PubMedCrossRefGoogle Scholar
  92. 92.
    Sailer HF, Kolb E (1994) Application of purified bone morphogenetic protein (BMP) preparations in cranio-maxillo-facial surgery: reconstruction in craniofacial malformations and post-traumatic or operative defects of the skull with lyophilized cartilage and BMP. Journal of Cranio-Maxillofacial Surgery 22:191–199PubMedCrossRefGoogle Scholar
  93. 93.
    Salyer KE, Gendler E, Squier CA (1997) Long-term outcome of extensive skull reconstruction using demineralized perforated bone in Siamese twins joined at the skull vertex. Plast Reconstr Surg 99:1721PubMedCrossRefGoogle Scholar
  94. 94.
    Schantz JT, Teoh SH, Lim TC, Endres M, Lam CXF, Hutmacher DW (2003) Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system Tissue engineering 9:113–126Google Scholar
  95. 95.
    Hardt N, Gottsauner A, Sgier F (1994) Ergebnisse unterschiedlicher Rekonstruktionsverfahren im fronto-facialen Bereich. Fortschritte der Kieferund Gesichts-Chirurgie Bd 34:47–50Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • James Tait Goodrich
    • 1
    • 2
  • Adam L. Sandler
    • 3
  • Oren Tepper
    • 4
  1. 1.Division of Pediatric Neurosurgery, Leo Davidoff Department of Neurological SurgeryChildren’s Hospital at MontefioreBronxUSA
  2. 2.Pediatrics, Plastic and Reconstructive SurgeryAlbert Einstein College of MedicineBronxUSA
  3. 3.Neurological Surgery, Leo Davidoff Department of Neurological SurgeryMontefiore Medical Center, Albert Einstein College of MedicineBronxUSA
  4. 4.Division of Plastic and Reconstructive SurgeryMontefiore Medical Center, Albert Einstein College of MedicineBronxUSA

Personalised recommendations