Child's Nervous System

, Volume 28, Issue 4, pp 521–532

Matching mice to malignancy: molecular subgroups and models of medulloblastoma

  • Jasmine Lau
  • Christin Schmidt
  • Shirley L. Markant
  • Michael D. Taylor
  • Robert J. Wechsler-Reya
  • William A. Weiss
Review Paper



Medulloblastoma, the largest group of embryonal brain tumors, has historically been classified into five variants based on histopathology. More recently, epigenetic and transcriptional analyses of primary tumors have subclassified medulloblastoma into four to six subgroups, most of which are incongruous with histopathological classification.


Improved stratification is required for prognosis and development of targeted treatment strategies, to maximize cure and minimize adverse effects. Several mouse models of medulloblastoma have contributed both to an improved understanding of progression and to developmental therapeutics. In this review, we summarize the classification of human medulloblastoma subtypes based on histopathology and molecular features. We describe existing genetically engineered mouse models, compare these to human disease, and discuss the utility of mouse models for developmental therapeutics. Just as accurate knowledge of the correct molecular subtype of medulloblastoma is critical to the development of targeted therapy in patients, we propose that accurate modeling of each subtype of medulloblastoma in mice will be necessary for preclinical evaluation and optimization of those targeted therapies.


Medulloblastoma Mouse models Molecular subgroups Targeted therapies Preclinical testing 


  1. 1.
    Rossi A, Caracciolo V, Russo G, Reiss K, Giordano A (2008) Medulloblastoma: from molecular pathology to therapy. Clin Cancer Res 14(4):971–976. doi:10.1158/1078-0432.CCR-07-2072 PubMedCrossRefGoogle Scholar
  2. 2.
    Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5(4):209–218. doi:10.1016/S1470-2045(04)01424-X PubMedCrossRefGoogle Scholar
  3. 3.
    Saran A (2009) Medulloblastoma: role of developmental pathways, DNA repair signaling, and other players. Curr Mol Med 9(9):1046–1057PubMedCrossRefGoogle Scholar
  4. 4.
    Pfister SM, Korshunov A, Kool M, Hasselblatt M, Eberhart C, Taylor MD (2010) Molecular diagnostics of CNS embryonal tumors. Acta Neuropathol 120(5):553–566. doi:10.1007/s00401-010-0751-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Momota H, Holland EC (2009) Mouse models of CNS embryonal tumors. Brain Tumor Pathol 26(2):43–50. doi:10.1007/s10014-009-0253-0 PubMedCrossRefGoogle Scholar
  6. 6.
    CBTRUS (2010) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2006. Central Brain Tumor Registry of the United States, Hinsdale.
  7. 7.
    von Hoff K, Hinkes B, Gerber NU, Deinlein F, Mittler U, Urban C, Benesch M, Warmuth-Metz M, Soerensen N, Zwiener I, Goette H, Schlegel PG, Pietsch T, Kortmann RD, Kuehl J, Rutkowski S (2009) Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT'91. Eur J Cancer 45(7):1209–1217. doi:10.1016/j.ejca.2009.01.015 CrossRefGoogle Scholar
  8. 8.
    Zeltzer PM, Boyett JM, Finlay JL, Albright AL, Rorke LB, Milstein JM, Allen JC, Stevens KR, Stanley P, Li H, Wisoff JH, Geyer JR, McGuire-Cullen P, Stehbens JA, Shurin SB, Packer RJ (1999) Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children's Cancer Group 921 randomized phase III study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 17(3):832–845Google Scholar
  9. 9.
    Albright AL, Wisoff JH, Zeltzer PM, Boyett JM, Rorke LB, Stanley P (1996) Effects of medulloblastoma resections on outcome in children: a report from the Children's Cancer Group. Neurosurgery 38(2):265–271PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt AL, Brunetto AL, Schwartsmann G, Roesler R, Abujamra AL (2010) Recent therapeutic advances for treating medulloblastoma: focus on new molecular targets. CNS Neurol Disord Drug Targets 9(3):335–348PubMedGoogle Scholar
  11. 11.
    Huse JT, Holland EC (2009) Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 19(1):132–143. doi:10.1111/j.1750-3639.2008.00234.x PubMedCrossRefGoogle Scholar
  12. 12.
    Packer RJ, Vezina G (2008) Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch Neurol 65(11):1419–1424. doi:10.1001/archneur.65.11.1419 PubMedCrossRefGoogle Scholar
  13. 13.
    Eberhart CG (2011) Molecular diagnostics in embryonal brain tumors. Brain Pathol 21(1):96–104. doi:10.1111/j.1750-3639.2010.00455.x PubMedCrossRefGoogle Scholar
  14. 14.
    Boman KK, Hovén E, Anclair M, Lannering B, Gustafsson G (2009) Health and persistent functional late effects in adult survivors of childhood CNS tumours: a population-based cohort study. Eur J Cancer 45(14):2552–2561. doi:10.1016/j.ejca.2009.06.008 PubMedCrossRefGoogle Scholar
  15. 15.
    Mulhern RK, Palmer SL, Merchant TE, Wallace D, Kocak M, Brouwers P, Krull K, Chintagumpala M, Stargatt R, Ashley DM, Tyc VL, Kun L, Boyett J, Gajjar A (2005) Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 23(24):5511–5519. doi:10.1200/JCO.2005.00.703 CrossRefGoogle Scholar
  16. 16.
    Frange P, Alapetite C, Gaboriaud G, Bours D, Zucker JM, Zerah M, Brisse H, Chevignard M, Mosseri V, Bouffet E, Doz F (2009) From childhood to adulthood: long-term outcome of medulloblastoma patients. The Institut Curie experience (1980–2000). J Neurooncol 95(2):271–279. doi:10.1007/s11060-009-9927-z PubMedCrossRefGoogle Scholar
  17. 17.
    Oyharcabal-Bourden V, Kalifa C, Gentet JC, Frappaz D, Edan C, Chastagner P, Sariban E, Pagnier A, Babin A, Pichon F, Neuenschwander S, Vinchon M, Bours D, Mosseri V, Le Gales C, Ruchoux M, Carrie C, Doz F (2005) Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinal radiation therapy: a French Society of Pediatric Oncology Study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 23(21):4726–4734. doi:10.1200/JCO.2005.00.760 CrossRefGoogle Scholar
  18. 18.
    Pizer BL, Clifford SC (2009) The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg 23(4):364–375. doi:10.1080/02688690903121807 PubMedCrossRefGoogle Scholar
  19. 19.
    Taylor RE, Bailey CC, Robinson KJ, Weston CL, Walker DA, Ellison D, Ironside J, Pizer BL, Lashford LS (2005) Outcome for patients with metastatic (M2-3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur J Cancer 41(5):727–734. doi:10.1016/j.ejca.2004.12.017 PubMedCrossRefGoogle Scholar
  20. 20.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4 PubMedCrossRefGoogle Scholar
  21. 21.
    Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annual review of pathology 3:341–365. doi:10.1146/annurev.pathmechdis.3.121806.151518 PubMedCrossRefGoogle Scholar
  22. 22.
    Gailani MR, Bale SJ, Leffell DJ, DiGiovanna JJ, Peck GL, Poliak S, Drum MA, Pastakia B, McBride OW, Kase R (1992) Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 69(1):111–117PubMedCrossRefGoogle Scholar
  23. 23.
    Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A, Vorechovsky I, Holmberg E, Unden AB, Gillies S, Negus K, Smyth I, Pressman C, Leffell DJ, Gerrard B, Goldstein AM, Dean M, Toftgard R, Chenevix-Trench G, Wainwright B, Bale AE (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85(6):841–851PubMedCrossRefGoogle Scholar
  24. 24.
    Dong J, Gailani MR, Pomeroy SL, Reardon D, Bale AE (2000) Identification of PATCHED mutations in medulloblastomas by direct sequencing. Hum Mutat 16(1):89–90. doi:10.1002/1098-1004(200007)16:1<89::AID-HUMU18>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  25. 25.
    Vorechovský I, Tingby O, Hartman M, Strömberg B, Nister M, Collins VP, Toftgård R (1997) Somatic mutations in the human homologue of Drosophila patched in primitive neuroectodermal tumours. Oncogene 15(3):361–366. doi:10.1038/sj.onc.1201340 PubMedCrossRefGoogle Scholar
  26. 26.
    Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J, Sörensen N, Berthold F, Henk B, Schmandt N, Wolf HK, von Deimling A, Wainwright B, Chenevix-Trench G, Wiestler OD, Wicking C (1997) Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57(11):2085–2088PubMedGoogle Scholar
  27. 27.
    Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD (1997) Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57(5):842–845PubMedGoogle Scholar
  28. 28.
    Taylor MD, Liu L, Raffel C, C-c H, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31(3):306–310. doi:10.1038/ng916 PubMedCrossRefGoogle Scholar
  29. 29.
    Zurawel RH, Allen C, Chiappa S, Cato W, Biegel J, Cogen P, de Sauvage F, Raffel C (2000) Analysis of PTCH/SMO/SHH pathway genes in medulloblastoma. Genes Chromosomes Cancer 27(1):44–51PubMedCrossRefGoogle Scholar
  30. 30.
    Uziel T, Karginov FV, Xie S, Parker JS, Wang Y-D, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G, Roussel MF (2009) The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106(8):2812–2817. doi:10.1073/pnas.0809579106 PubMedCrossRefGoogle Scholar
  31. 31.
    Northcott PA, Fernandez-L A, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y, Grundy R, Van Meter T, Rutka JT, Croce CM, Kenney AM, Taylor MD (2009) The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69(8):3249–3255. doi:10.1158/0008-5472.CAN-08-4710 PubMedCrossRefGoogle Scholar
  32. 32.
    Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM (2009) YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 23(23):2729–2741. doi:10.1101/gad.1824509 PubMedCrossRefGoogle Scholar
  33. 33.
    Ellison DW (2010) Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol 120(3):305–316. doi:10.1007/s00401-010-0726-6 PubMedCrossRefGoogle Scholar
  34. 34.
    Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156(2):433–437PubMedCrossRefGoogle Scholar
  35. 35.
    Paraf F, Jothy S, Van Meir EG (1997) Brain tumor-polyposis syndrome: two genetic diseases? Journal of clinical oncology: official journal of the American Society of Clinical Oncology 15(7):2744–2758Google Scholar
  36. 36.
    Zurawel RH, Chiappa SA, Allen C, Raffel C (1998) Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 58(5):896–899PubMedGoogle Scholar
  37. 37.
    Eberhart CG, Tihan T, Burger PC (2000) Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 59(4):333–337PubMedGoogle Scholar
  38. 38.
    Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2010) Medulloblastoma comprises four distinct molecular variants. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. doi:10.1200/JCO.2009.27.4324
  39. 39.
    Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC, Committee UKCsCSGBT (2005) beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 23(31):7951–7957. doi:10.1200/JCO.2005.01.5479 CrossRefGoogle Scholar
  40. 40.
    Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkowski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 27(10):1627–1636. doi:10.1200/JCO.2008.17.9432 CrossRefGoogle Scholar
  41. 41.
    Eberhart CG, Kratz JE, Schuster A, Goldthwaite P, Cohen KJ, Perlman EJ, Burger PC (2002) Comparative genomic hybridization detects an increased number of chromosomal alterations in large cell/anaplastic medulloblastomas. Brain Pathol 12(1):36–44PubMedCrossRefGoogle Scholar
  42. 42.
    Aldosari N, Bigner SH, Burger PC, Becker L, Kepner JL, Friedman HS, McLendon RE (2002) MYCC and MYCN oncogene amplification in medulloblastoma. A fluorescence in situ hybridization study on paraffin sections from the Children’s Oncology Group. Arch Pathol Lab Med 126(5):540–544PubMedGoogle Scholar
  43. 43.
    Kleihues P, Schäuble B, zur Hausen A, Estève J, Ohgaki H (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150(1):1–13PubMedGoogle Scholar
  44. 44.
    Frank AJ, Hernan R, Hollander A, Lindsey JC, Lusher ME, Fuller CE, Clifford SC, Gilbertson RJ (2004) The TP53-ARF tumor suppressor pathway is frequently disrupted in large/cell anaplastic medulloblastoma. Brain Res Mol Brain Res 121(1–2):137–140. doi:10.1016/j.molbrainres.2003.11.016 PubMedCrossRefGoogle Scholar
  45. 45.
    Tabori U, Baskin B, Shago M, Alon N, Taylor MD, Ray PN, Bouffet E, Malkin D, Hawkins C (2010) Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 28(8):1345–1350. doi:10.1200/JCO.2009.23.5952 CrossRefGoogle Scholar
  46. 46.
    Pfaff E, Remke M, Sturm D, Benner A, Witt H, Milde T, von Bueren AO, Wittmann A, Schöttler A, Jorch N, Graf N, Kulozik AE, Witt O, Scheurlen W, von Deimling A, Rutkowski S, Taylor MD, Tabori U, Lichter P, Korshunov A, Pfister SM (2010) TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 28(35):5188–5196. doi:10.1200/JCO.2010.31.1670 CrossRefGoogle Scholar
  47. 47.
    Mendrzyk F, Korshunov A, Toedt G, Schwarz F, Korn B, Joos S, Hochhaus A, Schoch C, Lichter P, Radlwimmer B (2006) Isochromosome breakpoints on 17p in medulloblastoma are flanked by different classes of DNA sequence repeats. Genes Chromosomes Cancer 45(4):401–410. doi:10.1002/gcc.20304 PubMedCrossRefGoogle Scholar
  48. 48.
    Di Marcotullio L, Ferretti E, De Smaele E, Argenti B, Mincione C, Zazzeroni F, Gallo R, Masuelli L, Napolitano M, Maroder M, Modesti A, Giangaspero F, Screpanti I, Alesse E, Gulino A (2004) REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc Natl Acad Sci USA 101(29):10833–10838. doi:10.1073/pnas.0400690101 PubMedCrossRefGoogle Scholar
  49. 49.
    Briggs KJ, Corcoran-Schwartz IM, Zhang W, Harcke T, Devereux WL, Baylin SB, Eberhart CG, Watkins DN (2008) Cooperation between the Hic1 and Ptch1 tumor suppressors in medulloblastoma. Genes Dev 22(6):770–785. doi:10.1101/gad.1640908 PubMedCrossRefGoogle Scholar
  50. 50.
    Waha A, Waha A, Koch A, Meyer-Puttlitz B, Weggen S, Sörensen N, Tonn JC, Albrecht S, Goodyer CG, Berthold F, Wiestler OD, Pietsch T (2003) Epigenetic silencing of the HIC-1 gene in human medulloblastomas. J Neuropathol Exp Neurol 62(11):1192–1201PubMedGoogle Scholar
  51. 51.
    Rood BR, Zhang H, Weitman DM, Cogen PH (2002) Hypermethylation of HIC-1 and 17p allelic loss in medulloblastoma. Cancer Res 62(13):3794–3797PubMedGoogle Scholar
  52. 52.
    Lindsey JC, Anderton JA, Lusher ME, Clifford SC (2005) Epigenetic events in medulloblastoma development. Neurosurg Focus 19(5):E10PubMedCrossRefGoogle Scholar
  53. 53.
    Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P, Pietrosanti L, De Smaele E, Ferretti E, Miele E, Pelloni M, De Simone G, Pedone EM, Gallinari P, Giorgi A, Steinkühler C, Vitagliano L, Pedone C, Schinin ME, Screpanti I, Gulino A (2010) Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nature Cell Biology 12(2):132–142. doi:10.1038/ncb2013 PubMedCrossRefGoogle Scholar
  54. 54.
    Peters I, Rehmet K, Wilke N, Kuczyk MA, Hennenlotter J, Eilers T, Machtens S, Jonas U, Serth J (2007) RASSF1A promoter methylation and expression analysis in normal and neoplastic kidney indicates a role in early tumorigenesis. Mol Cancer 6:49. doi:10.1186/1476-4598-6-49 PubMedCrossRefGoogle Scholar
  55. 55.
    Lindsey JC, Lusher ME, Anderton JA, Bailey S, Gilbertson RJ, Pearson ADJ, Ellison DW, Clifford SC (2004) Identification of tumour-specific epigenetic events in medulloblastoma development by hypermethylation profiling. Carcinogenesis 25(5):661–668. doi:10.1093/carcin/bgh055 PubMedCrossRefGoogle Scholar
  56. 56.
    Lusher ME, Lindsey JC, Latif F, Pearson ADJ, Ellison DW, Clifford SC (2002) Biallelic epigenetic inactivation of the RASSF1A tumor suppressor gene in medulloblastoma development. Cancer Res 62(20):5906–5911PubMedGoogle Scholar
  57. 57.
    Kongkham PN, Northcott PA, Ra YS, Nakahara Y, Mainprize TG, Croul SE, Smith CA, Taylor MD, Rutka JT (2008) An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res 68(23):9945–9953. doi:10.1158/0008-5472.CAN-08-2169 PubMedCrossRefGoogle Scholar
  58. 58.
    Nakahara Y, Northcott PA, Li M, Kongkham PN, Smith C, Yan H, Croul S, Ra Y-S, Eberhart C, Huang A, Bigner D, Grajkowska W, Van Meter T, Rutka JT, Taylor MD (2010) Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia 12(1):20–27PubMedGoogle Scholar
  59. 59.
    Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D, Brat DJ, Perry A, Eberhart CG (2004) Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 64(21):7787–7793. doi:10.1158/0008-5472.CAN-04-1446 PubMedCrossRefGoogle Scholar
  60. 60.
    Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA, Russell TL, Ellenbogen RG, Bernstein ID, Beachy PA, Olson JM (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64(21):7794–7800. doi:10.1158/0008-5472.CAN-04-1813 PubMedCrossRefGoogle Scholar
  61. 61.
    Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, Esposito V, Galeone A, Navas L, Esposito S, Gargiulo S, Fattet S, Donofrio V, Cinalli G, Brunetti A, Vecchio LD, Northcott PA, Delattre O, Taylor MD, Iolascon A, Zollo M (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One 4(3):e4998. doi:10.1371/journal.pone.0004998 PubMedCrossRefGoogle Scholar
  62. 62.
    Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, McLendon RE, Fults DW, Velculescu VE, Bigner DD, Yan H (2004) Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 64(15):5048–5050. doi:10.1158/0008-5472.CAN-04-1170 PubMedCrossRefGoogle Scholar
  63. 63.
    Inda MM, Mercapide J, Muñoz J, Coullin P, Danglot G, Tuñon T, Martínez-Peñuela JM, Rivera JM, Burgos JJ, Bernheim A, Castresana JS (2004) PTEN and DMBT1 homozygous deletion and expression in medulloblastomas and supratentorial primitive neuroectodermal tumors. Oncol Rep 12(6):1341–1347PubMedGoogle Scholar
  64. 64.
    Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS-v, Caron HN, Cloos J, Mrsić A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3(8):e3088. doi:10.1371/journal.pone.0003088 PubMedCrossRefGoogle Scholar
  65. 65.
    Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 24(12):1924–1931. doi:10.1200/JCO.2005.04.4974 CrossRefGoogle Scholar
  66. 66.
    Cho Y-J, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, Berhoukim R, Amani V, Goumnerova L, Eberhart CG, Lau CC, Olson JM, Gilbertson RJ, Gajjar A, Delattre O, Kool M, Ligon K, Meyerson M, Mesirov JP, Pomeroy SL (2010) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. doi:10.1200/JCO.2010.28.5148
  67. 67.
    Chen TT, Mora EC, Mealey J (1975) Cultivation of medulloblastoma cells derived from simian adenovirus SA7-induced hamster brain tumor. Cancer Res 35(12):3566–3570PubMedGoogle Scholar
  68. 68.
    Rapp F, Pauluzzi S, Waltz TA, Burdine JA, Matsen FA, Levy B (1969) Induction of brain tumors in newborn hamsters by simian adenovirus SA7. Cancer Res 29(6):1173–1178PubMedGoogle Scholar
  69. 69.
    Zu Rhein GM, Varakis JN (1979) Perinatal induction of medulloblastomas in Syrian golden hamsters by a human polyoma virus (JC). Natl Cancer Inst Monogr 51:205–208PubMedGoogle Scholar
  70. 70.
    Nagashima K, Yasui K, Kimura J, Washizu M, Yamaguchi K, Mori W (1984) Induction of brain tumors by a newly isolated JC virus (Tokyo-1 strain). Am J Pathol 116(3):455–463PubMedGoogle Scholar
  71. 71.
    Zurawel RH, Allen C, Wechsler-Reya R, Scott MP, Raffel C (2000) Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice. Genes Chromosomes Cancer 28(1):77–81PubMedCrossRefGoogle Scholar
  72. 72.
    Goodrich LV, Milenković L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277(5329):1109–1113PubMedCrossRefGoogle Scholar
  73. 73.
    Wetmore C, Eberhart DE, Curran T (2000) The normal patched allele is expressed in medulloblastomas from mice with heterozygous germ-line mutation of patched. Cancer Res 60(8):2239–2246PubMedGoogle Scholar
  74. 74.
    Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale J, Olson JM, Beachy PA (2002) Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297(5586):1559–1561. doi:10.1126/science.1073733 PubMedCrossRefGoogle Scholar
  75. 75.
    Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TTT, Lin SM, Wechsler-Reya RJ (2005) Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 132(10):2425–2439. doi:10.1242/dev.01793 PubMedCrossRefGoogle Scholar
  76. 76.
    Lee Y, Miller HL, Russell HR, Boyd K, Curran T, McKinnon PJ (2006) Patched2 modulates tumorigenesis in patched1 heterozygous mice. Cancer Res 66(14):6964–6971. doi:10.1158/0008-5472.CAN-06-0505 PubMedCrossRefGoogle Scholar
  77. 77.
    Wetmore C, Eberhart DE, Curran T (2001) Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 61(2):513–516PubMedGoogle Scholar
  78. 78.
    Romer J, Curran T (2005) Targeting medulloblastoma: small-molecule inhibitors of the Sonic Hedgehog pathway as potential cancer therapeutics. Cancer Res 65(12):4975–4978. doi:10.1158/0008-5472.CAN-05-0481 PubMedCrossRefGoogle Scholar
  79. 79.
    Pogoriler J, Millen K, Utset M, Du W (2006) Loss of cyclin D1 impairs cerebellar development and suppresses medulloblastoma formation. Development 133(19):3929–3937. doi:10.1242/dev.02556 PubMedCrossRefGoogle Scholar
  80. 80.
    Kimura H, Stephen D, Joyner A, Curran T (2005) Gli1 is important for medulloblastoma formation in Ptc1+/− mice. Oncogene 24(25):4026–4036. doi:10.1038/sj.onc.1208567 PubMedGoogle Scholar
  81. 81.
    Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4(5):619–622PubMedCrossRefGoogle Scholar
  82. 82.
    Hahn H, Wojnowski L, Specht K, Kappler R, Calzada-Wack J, Potter D, Zimmer A, Müller U, Samson E, Quintanilla-Martinez L, Zimmer A (2000) Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275(37):28341–28344. doi:10.1074/jbc.C000352200 PubMedCrossRefGoogle Scholar
  83. 83.
    Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, McMahon AP (2006) A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 66(20):10171–10178. doi:10.1158/0008-5472.CAN-06-0657 PubMedCrossRefGoogle Scholar
  84. 84.
    Hatton BA, Villavicencio EH, Tsuchiya KD, Pritchard JI, Ditzler S, Pullar B, Hansen S, Knoblaugh SE, Lee D, Eberhart CG, Hallahan AR, Olson JM (2008) The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res 68(6):1768–1776. doi:10.1158/0008-5472.CAN-07-5092 PubMedCrossRefGoogle Scholar
  85. 85.
    Yang Z-J, Ellis T, Markant SL, Read T-A, Kessler JD, Bourboulas M, Schüller U, Machold R, Fishell G, Rowitch DH, Wainwright BJ, Wechsler-Reya RJ (2008) Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell 14(2):135–145. doi:10.1016/j.ccr.2008.07.003 PubMedCrossRefGoogle Scholar
  86. 86.
    Schüller U, Heine VM, Mao J, Kho AT, Dillon AK, Han Y-G, Huillard E, Sun T, Ligon AH, Qian Y, Ma Q, Alvarez-Buylla A, McMahon AP, Rowitch DH, Ligon KL (2008) Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14(2):123–134. doi:10.1016/j.ccr.2008.07.005 PubMedCrossRefGoogle Scholar
  87. 87.
    Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T, McKinnon PJ (2007) Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26(44):6442–6447. doi:10.1038/sj.onc.1210467 PubMedCrossRefGoogle Scholar
  88. 88.
    Gaiano N, Kohtz JD, Turnbull DH, Fishell G (1999) A method for rapid gain-of-function studies in the mouse embryonic nervous system. Nat Neurosci 2(9):812–819. doi:10.1038/12186 PubMedCrossRefGoogle Scholar
  89. 89.
    Weiner HL, Bakst R, Hurlbert MS, Ruggiero J, Ahn E, Lee WS, Stephen D, Zagzag D, Joyner AL, Turnbull DH (2002) Induction of medulloblastomas in mice by sonic hedgehog, independent of Gli1. Cancer Res 62(22):6385–6389PubMedGoogle Scholar
  90. 90.
    Orsulic S (2002) An RCAS-TVA-based approach to designer mouse models. Mamm Genome 13(10):543–547. doi:10.1007/s00335-002-4003-4 PubMedCrossRefGoogle Scholar
  91. 91.
    Holland EC, Varmus HE (1998) Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 95(3):1218–1223PubMedCrossRefGoogle Scholar
  92. 92.
    Binning MJ, Niazi T, Pedone CA, Lal B, Eberhart CG, Kim KJ, Laterra J, Fults DW (2008) Hepatocyte growth factor and sonic Hedgehog expression in cerebellar neural progenitor cells costimulate medulloblastoma initiation and growth. Cancer Res 68(19):7838–7845. doi:10.1158/0008-5472.CAN-08-1899 PubMedCrossRefGoogle Scholar
  93. 93.
    McCall TD, Pedone CA, Fults DW (2007) Apoptosis suppression by somatic cell transfer of Bcl-2 promotes Sonic Hedgehog-dependent medulloblastoma formation in mice. Cancer Res 67(11):5179–5185. doi:10.1158/0008-5472.CAN-06-4177 PubMedCrossRefGoogle Scholar
  94. 94.
    Browd SR, Kenney AM, Gottfried ON, Yoon JW, Walterhouse D, Pedone CA, Fults DW (2006) N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res 66(5):2666–2672. doi:10.1158/0008-5472.CAN-05-2198 PubMedCrossRefGoogle Scholar
  95. 95.
    Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW (2004) Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23(36):6156–6162. doi:10.1038/sj.onc.1207818 PubMedCrossRefGoogle Scholar
  96. 96.
    Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW (2003) c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5(3):198–204. doi:NO_DOI PubMedGoogle Scholar
  97. 97.
    Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22(4):436–448. doi:10.1101/gad.1627008 PubMedCrossRefGoogle Scholar
  98. 98.
    Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE, Kuchner EB, Eberhart C, Laterra J, Abounader R (2005) The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res 65(20):9355–9362. doi:10.1158/0008-5472.CAN-05-1946 PubMedCrossRefGoogle Scholar
  99. 99.
    Li Y, Guessous F, Johnson EB, Eberhart CG, Li X-N, Shu Q, Fan S, Lal B, Laterra J, Schiff D, Abounader R (2008) Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma. Lab Invest 88(2):98–111. doi:10.1038/labinvest.3700702 PubMedCrossRefGoogle Scholar
  100. 100.
    Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000) Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14(8):994–1004PubMedGoogle Scholar
  101. 101.
    Shakhova O, Leung C, van Montfort E, Berns A, Marino S (2006) Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2. Cancer Res 66(10):5190–5200. doi:10.1158/0008-5472.CAN-05-3545 PubMedCrossRefGoogle Scholar
  102. 102.
    Zindy F, Nilsson LM, Nguyen L, Meunier C, Smeyne RJ, Rehg JE, Eberhart C, Sherr CJ, Roussel MF (2003) Hemangiosarcomas, medulloblastomas, and other tumors in Ink4c/p53-null mice. Cancer Res 63(17):5420–5427PubMedGoogle Scholar
  103. 103.
    Lee Y, McKinnon PJ (2002) DNA ligase IV suppresses medulloblastoma formation. Cancer Res 62(22):6395–6399PubMedGoogle Scholar
  104. 104.
    Yan CT, Kaushal D, Murphy M, Zhang Y, Datta A, Chen C, Monroe B, Mostoslavsky G, Coakley K, Gao Y, Mills KD, Fazeli AP, Tepsuporn S, Hall G, Mulligan R, Fox E, Bronson R, De Girolami U, Lee C, Alt FW (2006) XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice. Proc Natl Acad Sci USA 103(19):7378–7383. doi:10.1073/pnas.0601938103 PubMedCrossRefGoogle Scholar
  105. 105.
    Frappart P-O, Lee Y, Lamont J, McKinnon PJ (2007) BRCA2 is required for neurogenesis and suppression of medulloblastoma. EMBO J 26(11):2732–2742. doi:10.1038/sj.emboj.7601703 PubMedCrossRefGoogle Scholar
  106. 106.
    Tong W-M, Ohgaki H, Huang H, Granier C, Kleihues P, Wang Z-Q (2003) Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(−/−) mice. Am J Pathol 162(1):343–352PubMedCrossRefGoogle Scholar
  107. 107.
    Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, Kranenburg TA, Hogg T, Poppleton H, Martin J, Finkelstein D, Pounds S, Weiss A, Patay Z, Scoggins M, Ogg R, Pei Y, Yang Z-J, Brun S, Lee Y, Zindy F, Lindsey JC, Taketo MM, Boop FA, Sanford RA, Gajjar A, Clifford SC, Roussel MF, McKinnon PJ, Gutmann DH, Ellison DW, Wechsler-Reya R, Gilbertson RJ (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature. doi:10.1038/nature09587
  108. 108.
    Swartling FJ, Grimmer MR, Hackett CS, Northcott PA, Fan Q-W, Goldenberg DD, Lau J, Masic S, Nguyen K, Yakovenko S, Zhe X-N, Gilmer HCF, Collins R, Nagaoka M, Phillips JJ, Jenkins RB, Tihan T, Vandenberg SR, James CD, Tanaka K, Taylor MD, Weiss WA, Chesler L (2010) Pleiotropic role for MYCN in medulloblastoma. Genes Dev 24(10):1059–1072. doi:10.1101/gad.1907510 PubMedCrossRefGoogle Scholar
  109. 109.
    Cooper MK, Porter JA, Young KE, Beachy PA (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280(5369):1603–1607PubMedCrossRefGoogle Scholar
  110. 110.
    Incardona JP, Gaffield W, Kapur RP, Roelink H (1998) The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 125(18):3553–3562PubMedGoogle Scholar
  111. 111.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406(6799):1005–1009. doi:10.1038/35023008 PubMedCrossRefGoogle Scholar
  112. 112.
    Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16(21):2743–2748. doi:10.1101/gad.1025302 PubMedCrossRefGoogle Scholar
  113. 113.
    Chen JK, Taipale J, Young KE, Maiti T, Beachy PA (2002) Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99(22):14071–14076. doi:10.1073/pnas.182542899 PubMedCrossRefGoogle Scholar
  114. 114.
    Robarge KD, Brunton SA, Castanedo GM, Cui Y, Dina MS, Goldsmith R, Gould SE, Guichert O, Gunzner JL, Halladay J, Jia W, Khojasteh C, Koehler MFT, Kotkow K, La H, Lalonde RL, Lau K, Lee L, Marshall D, Marsters JC, Murray LJ, Qian C, Rubin LL, Salphati L, Stanley MS, Stibbard JHA, Sutherlin DP, Ubhayaker S, Wang S, Wong S, Xie M (2009) GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 19(19):5576–5581. doi:10.1016/j.bmcl.2009.08.049 PubMedCrossRefGoogle Scholar
  115. 115.
    Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, Curran T (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6(3):229–240. doi:10.1016/j.ccr.2004.08.019 PubMedCrossRefGoogle Scholar
  116. 116.
    Tremblay MR, Lescarbeau A, Grogan MJ, Tan E, Lin G, Austad BC, Yu L-C, Behnke ML, Nair SJ, Hagel M, White K, Conley J, Manna JD, Alvarez-Diez TM, Hoyt J, Woodward CN, Sydor JR, Pink M, MacDougall J, Campbell MJ, Cushing J, Ferguson J, Curtis MS, McGovern K, Read MA, Palombella VJ, Adams J, Castro AC (2009) Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 52(14):4400–4418. doi:10.1021/jm900305z PubMedCrossRefGoogle Scholar
  117. 117.
    Pan S, Wu X, Jiang J, Gao W, Wan Y, Cheng D, Han D, Liu J, Englund NP, Wang Y, Peukert S, Miller-Moslin K, Yuan J, Guo R, Matsumoto M, Vattay A, Jiang Y, Tsao J, Sun F, Pferdekamper AC, Dodd S, Tuntland T, Maniara W, Kelleher JF, Y-m Y, Warmuth M, Williams J, Dorsch M (2010) Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med Chem Lett 1(3):130–134. doi:10.1021/ml1000307 CrossRefGoogle Scholar
  118. 118.
    Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, Hsiao K, Yuan J, Green J, Ospina B, Yu Q, Ostrom L, Fordjour P, Anderson DL, Monahan JE, Kelleher JF, Peukert S, Pan S, Wu X, Maira S-M, García-Echeverría C, Briggs KJ, Watkins DN, Yao Y-m, Lengauer C, Warmuth M, Sellers WR, Dorsch M (2010) Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med 2(51):51ra70. doi:10.1126/scitranslmed.3001599 PubMedCrossRefGoogle Scholar
  119. 119.
    Kimura H, Ng JMY, Curran T (2008) Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13(3):249–260. doi:10.1016/j.ccr.2008.01.027 PubMedCrossRefGoogle Scholar
  120. 120.
    Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, LoRusso PM, Von Hoff DD, de Sauvage FJ, Low JA (2009) Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 361(12):1173–1178. doi:10.1056/NEJMoa0902903 PubMedCrossRefGoogle Scholar
  121. 121.
    Yauch RL, Dijkgraaf GJP, Alicke B, Januario T, Ahn CP, Holcomb T, Pujara K, Stinson J, Callahan CA, Tang T, Bazan JF, Kan Z, Seshagiri S, Hann CL, Gould SE, Low JA, Rudin CM, de Sauvage FJ (2009) Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326(5952):572–574. doi:10.1126/science.1179386 PubMedCrossRefGoogle Scholar
  122. 122.
    Dijkgraaf GJP, Alicke B, Weinmann L, Januario T, West K, Modrusan Z, Burdick D, Goldsmith R, Robarge K, Sutherlin D, Scales SJ, Gould SE, Yauch RL, de Sauvage FJ (2011) Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res 71(2):435–444. doi:10.1158/0008-5472.CAN-10-2876 PubMedCrossRefGoogle Scholar
  123. 123.
    LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Chang I, Darbonne WC, Graham RA, Zerivitz KL, Low JA, Von Hoff DD (2011) Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clinical cancer research: an official journal of the American Association for Cancer Research 17(8):2502–2511. doi:10.1158/1078-0432.CCR-10-2745 CrossRefGoogle Scholar
  124. 124.
    Beauchamp EM, Ringer L, Bulut G, Sajwan KP, Hall MD, Lee Y-C, Peaceman D, Ozdemirli M, Rodriguez O, MacDonald TJ, Albanese C, Toretsky JA, Uren A (2011) Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest 121(1):148–160. doi:10.1172/JCI42874 PubMedCrossRefGoogle Scholar
  125. 125.
    Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, Chong CR, Chang KS, Fereshteh M, Gardner D, Reya T, Liu JO, Epstein EH, Stevens DA, Beachy PA (2010) Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17(4):388–399. doi:10.1016/j.ccr.2010.02.027 PubMedCrossRefGoogle Scholar
  126. 126.
    Heine VM, Priller M, Ling J, Rowitch DH, Schüller U (2010) Dexamethasone destabilizes Nmyc to inhibit the growth of hedgehog-associated medulloblastoma. Cancer Res 70(13):5220–5225. doi:10.1158/0008-5472.CAN-10-0554 PubMedCrossRefGoogle Scholar
  127. 127.
    Spiller SE, Ravanpay AC, Hahn AW, Olson JM (2006) Suberoylanilide hydroxamic acid is effective in preclinical studies of medulloblastoma. J Neurooncol 79(3):259–270. doi:10.1007/s11060-006-9142-0 PubMedCrossRefGoogle Scholar
  128. 128.
    Ecke I, Petry F, Rosenberger A, Tauber S, Mönkemeyer S, Hess I, Dullin C, Kimmina S, Pirngruber J, Johnsen SA, Uhmann A, Nitzki F, Wojnowski L, Schulz-Schaeffer W, Witt O, Hahn H (2009) Antitumor effects of a combined 5-aza-2′deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice. Cancer Res 69(3):887–895. doi:10.1158/0008-5472.CAN-08-0946 PubMedCrossRefGoogle Scholar
  129. 129.
    Ohshima-Hosoyama S, Hosoyama T, Nelon LD, Keller C (2010) IGF-1 receptor inhibition by picropodophyllin in medulloblastoma. Biochem Biophys Res Commun 399(4):727–732. doi:10.1016/j.bbrc.2010.08.009 PubMedCrossRefGoogle Scholar
  130. 130.
    Coon V, Laukert T, Pedone CA, Laterra J, Kim KJ, Fults DW (2010) Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma. Mol Cancer Ther 9(9):2627–2636. doi:10.1158/1535-7163.MCT-10-0486 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jasmine Lau
    • 1
    • 2
    • 3
    • 4
  • Christin Schmidt
    • 1
    • 2
    • 3
    • 4
  • Shirley L. Markant
    • 5
    • 6
  • Michael D. Taylor
    • 7
    • 8
  • Robert J. Wechsler-Reya
    • 5
    • 6
  • William A. Weiss
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of NeurologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Helen Diller Family Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of Neurological Surgery and Brain Tumor Research CenterUniversity of CaliforniaSan FranciscoUSA
  4. 4.Department of PediatricsUniversity of CaliforniaSan FranciscoUSA
  5. 5.Tumor Development ProgramSanford-Burnham Medical Research InstituteLa JollaUSA
  6. 6.Department of Pharmacology & Cancer BiologyDuke University Medical CenterDurhamUSA
  7. 7.Division of Neurosurgery, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  8. 8.Arthur and Sonia Labatt Brain Tumour Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada

Personalised recommendations